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Abstract—Commodity computer systems today do not in-
clude a full trusted path capability. Consequently, malware can
control the user’s input and output in order to reveal sensitive
information to malicious parties or to generate manipulated
transaction requests to service providers. Recent hardware
offers compelling features for remote attestation and isolated
code execution, however, these mechanisms are not widely used
in deployed systems to date. We show how to leverage these
mechanisms to establish a “one-way” trusted path allowing
service providers to gain assurance that users’ transactions
were indeed submitted by a human operating the computer,
instead of by malware such as transaction generators. We
design, implement, and evaluate our solution, and argue that
it is practical and offers immediate value in e-commerce, as a
replacement for captchas, and in other Internet scenarios.

Keywords-security; transaction confirmation; trusted path;
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I. INTRODUCTION

For decades a significant challenge in computer security
has been realizing a mechanism for establishing a full
trusted path, i.e., a mechanism that (i) isolates the input
and output channels of different applications to preserve
the integrity and confidentiality of data exchanged with the
user, (ii) provides a technical means that assures the user
of a computer system that she is truly interacting with the
intended software, and (iii) assures running applications that
user inputs truly originate from the actions of a human (as
opposed to being synthesized or injected by other software).

Software vulnerabilities in the increasingly complex soft-
ware stack on commodity computing devices offer a large
attack surface that attackers can exploit to inject malicious
Trojan horse software, such as keyloggers [1] or transaction
generators [2]. These software-based attacks can eavesdrop
on user input or modify transactions in a malicious way, e.g.,
waiting until the user has legitimately authenticated to the
web server, and then issuing illegitimate transactions using
this channel (e.g., by faking or scripting user input).

Some trusted path proposals suggest the use of an exter-
nal verifier device. However, the increasing use of mobile
devices for sensitive online transactions and e-commerce

applications make these solutions inconvenient, especially
given today’s trend in device convergence (e.g., smartphones
including cameras, web access, GPS, etc.). Using one’s
mobile phone to verify one’s laptop may be reasonable in
some scenarios, but there are no verifiers available if the
transaction itself is taking place on the mobile device while
on-the-go. Thus, the challenge remains to somehow provide
a trustworthy mechanism on just one device that can defend
against transaction generators and malicious scripting that
imitates actions intended to be performed only by humans.

An additional disincentive for existing solutions is that
end users are rarely exposed to the liability for fraud.
In the US and much of Europe, credit card companies,
banks, and online merchants absorb this liability. Thus, it
is these institutions that have the incentive to make online
transactions more resilient to attacks.

We design, implement, and evaluate a secure transaction
confirmation architecture that can provide assurance to a
remote server that the user of a client system has indeed
confirmed a proposed action. With this property, a service
provider can ensure that it only commits transactions on the
user’s behalf if the user has actually confirmed the transac-
tion. We are able to realize such a system by providing the
properties of a trusted path in one direction only.

Restricting ourselves to a uni-directional trusted path
enables us to realize a significantly more practical implemen-
tation, remaining compatible with legacy operating systems
and applications. Our goal is to provide remotely-verifiable
evidence to service providers of events taking place on the
physical user-centric I/O devices. That is, we wish to prove to
a remote server that an actual user typed something or saw
something displayed on-screen. This makes it possible to
achieve trusted transaction confirmation on just one device.
Online service providers using our system are able to detect
and reject transaction generators. In contrast to a full trusted
path, we do not provide local, user-verifiable evidence of the
genuineness of output, i.e., malicious code may still fake the
confirmation process from the perspective of the user.

When implemented properly, the client-side user experi-



ence need not deviate from what users expect today. This
same technology also enables a more usable captcha [3]
mechanism, since our framework enables client platforms
to generate evidence of events originating on user-controlled
peripherals. We consider application scenarios where human
users can perform actions (e.g., enroll for services or issue
transactions) on Internet services that require a verification
of the user’s intent. E-commerce web sites, online banking,
e-government services, and even e-voting are all examples.

Based on a uni-directional trusted path, we architect a
trusted confirmation and optionally authentication (§III-D)
agent that executes in CPU-provided isolation. The trusted
computing base (TCB) of the trusted agent is relatively small
compared to prior works (a few thousand lines of code), and
remains compatible with users’ existing operating system
and application environments. We evaluate the performance
and security of our implementation, and provide an esti-
mation of the efforts needed to port our solution to other
hardware architectures, such as smartphones.

II. PROBLEM DEFINITION

A. Background: Trusted Path

Several approaches for realizing a full trusted path have
been proposed over the years, though none enjoy widespread
adoption on commodity systems. We briefly review some
representative designs, and their drawbacks.

One approach is to use a full trusted OS and window man-
ager, where a dedicated area of the screen is reserved for the
exclusive use of a trusted software component that shows the
identity and status of the current application [4]. While this
concept has been implemented in some research systems [5],
[6], the goal of widespread adoption has remained elusive.

A closely related variant leverages the notion of a secure
attention sequence, e.g., “Press Control-Alt-Delete to log
on.” The assumption here is that the OS kernel remains
uncompromised, and will always be the first software layer
to process keyboard input. Thus, any spoofed login dialog
box will be immediately overwritten by the legitimate box.
However, users must be taught to always press the necessary
key sequence. Another approach for indicating a trusted state
of a computer system is based on its ability to display
a “secret picture” [7] (or any other human-recognizable
secret). The system is architected such that the image data
can only be decrypted if the system is running approved
software, and the user must diligently remember to look
for her designated image whenever she performs a security-
sensitive operation. A final approach is to use some form
of dedicated additional hardware as an axiomatically trust-
worthy indicator, in the limit something as simple as a dual-
color LED [8]. This design is compelling as it still enables
full screen applications, which must otherwise be disallowed
given their ability to spoof other security indicators.

Unfortunately, none of these designs enjoy widespread de-
ployment for online transactions. While additional hardware

costs are sometimes a factor, we believe a significant barrier
to adoption on commodity systems is a lack of interest
from users. Vendors and financial institutions absorb the
majority of the risk in fraudulent online transactions today.
A confirmation system can be constructed based on a uni-
directional trusted path that does not strictly require any
additional work from the user, beyond reading a transaction
summary before finalizing a transaction (an action that is
already a standard part of online purchases).

B. Adversary Model

The model we consider involves four parties: (1) the user,
(2) the user’s computing device, (3) the service provider,
and (4) an attacker. The attacker has complete control over
the network between the service provider and the user’s
device. Thus, the attacker may try to impersonate the service
provider to trick the user. Moreover, the attacker is able to
install malware on the user’s computing platform or modify
any existing software there. The goal of the attacker is to
issue transactions to the service provider illegitimately on
behalf of the user.

C. Assumptions

While the adversary has control over the user’s software
environment, we make the following exception. We assume
the device has some form of secure execution environment
that is protected against software-based attacks, and that the
hardware is correctly implemented and protects the integrity
of the secure environment. Note that AMD SVM [9] and
Intel TXT [10] are examples of widely deployed hardware
capabilities that can provide the necessary properties. More-
over, we assume that the attacker cannot gain physical access
to the user’s platform. We assume that the service provider
is honest, and that the service provider’s servers are secure.
We do not consider denial-of-service attacks.

D. Security Objectives

Our main security requirements are the following:
1) Mutual authenticity of the user and service provider:

The user must somehow authenticate herself to the service
provider, and the user’s device must somehow authenticate
the service provider on behalf of the user.

2) Integrity of the transaction: Authenticated users can
engage in transactions with the service provider. Transac-
tion requests must be integrity-protected both during final
confirmation on the user’s computing device and during
transmission to the service provider.

3) Intention of the human user: The service provider
must gain assurance that a requested transaction is indeed
submitted by a human user, and not by malware. For this, the
service provider must be able to reliably verify that a certain
action (e.g., receive keypress events from a keyboard) has
been performed in a secure execution environment.



4) Binding between user and machine: The service
provider must be able to verify the binding between a
confirmation and a particular transaction request from a
certain machine.

The last requirement prevents proxy attacks, where con-
firmations are re-directed to other machines to get other
users perform the required action. However, where privacy
is a concern, the real identity of the user’s hardware device
should be appropriately anonymized, e.g., via a trusted third
party or cryptographic protocols [11].

These requirements are typical for e-commerce scenarios.
We prioritize application scenarios’ integrity requirements
over their secrecy requirements (excluding authentication).
For example, in e-commerce or online banking applications,
a Trojan horse plug-in that resides in the web browser may
eavesdrop on account balances or what items have been
recently ordered. However, the malware is prevented from
generating or modifying transactions.

III. ARCHITECTURE AND DESIGN

In this section we describe the architecture and design of
our uni-directional trusted path (UTP) solution. Our primary
design goal is to provide an integrity-protected confirmation
facility even when client users possess only a single device
without full trusted path capabilities.

A. High-Level Design of UTP

The main property of UTP is to enable a remote server
to gain a high level of assurance that a certain action
submitted by a client system was initiated at the behest
of its physically-present human user, and not by malware
such as a transaction generator. This means UTP realizes
properties (i) and (iii) of a trusted path (c.f. §I), but not
necessarily property (ii). Hence, users might not be able
to verify that they have been interacting with the intended
application or web site. The underlying motivation for such
an architecture is the simple fact that most users do not
actually pay attention to security indicators [12], [13], [14].

If anything goes wrong, e.g., malware tries to modify a
requested transaction or generate a new one, the remote
server in our design will notice this and discard such
malicious transactions. This is the essence of the value
provided by UTP. The trusted path goes (verifiably) from
the user to the server, and enables the server to significantly
reduce its exposure to transaction generators and other large-
scale, automated malicious client-side behavior.

UTP must enable a remote server to gain assurance
that the client platform is running a software configuration
that can take total control of the user-centric I/O devices,
including the keyboard, display, and optionally the mouse.
The client system must have the capability (via hardware
or software mechanisms) to construct a trustworthy channel
between these platform components, and to generate some
form of remotely-verifiable evidence that it is indeed in

control of these devices. We explicitly do not require local,
user-verifiable evidence of the presence of these channels,
as this implies the full trusted path capability.1

One viable approach for providing such a capability is
an isolated execution environment with remote attestation
capabilities, such as Flicker [15]. Flicker enables security-
sensitive code to execute in hardware-enforced isolation
from all other code and devices on the system, and to
generate attestations enabling remote verification that the ex-
ecution environment is established as intended. The security-
sensitive code can be constructed to take control of the
user-centric I/O devices (i.e., keyboard and display), and
the remote verifier can ascertain, given the code and as-
sumed correct hardware, that user-centric I/O is working as
intended.

Client Server

UTP
Code UTP

Figure 1. General architecture of UTP.

Figure 1 shows the high-level design of UTP. When the
client requests an action from the server that requires a
confirmation of the user’s intent, the server establishes the
uni-directional trusted path by sending a message to the
client (and a random nonce for the purpose of preventing
replay attacks). The (untrusted) client program invokes the
execution of the UTP code in the CPU’s secure execution
mode. This mode ensures that the UTP code executes iso-
lated from other software and successfully takes control of
the user-centric I/O devices. The UTP program displays the
message provided by the server (e.g., a transaction summary)
to the user. Once the user has viewed the message and
acted as required (e.g., confirmed her intention to submit the
transaction), UTP assembles the necessary data to generate
an attestation that these events transpired while in the se-
cure execution mode. This information is cryptographically
signed by a keypair that is accessible only while the isolated

1Note that our UTP architecture can readily support the “secret picture”
form of full trusted path [7]. However, we are highly skeptical of users’
motivation to diligently remember to check for their picture, and to actually
stop their primary task if it is missing [12], [13], [14]. Our emphasis in this
paper is on the utility of a mechanism for which users need not dedicate
any additional time or attention, as compared to existing systems.



execution environment is active, in order to demonstrate its
authenticity and integrity. The data and its signature are then
sent to the server. The server can verify the signature with
the provided and (e.g., from a trusted third party) certified
public key of the client platform, and subsequently verifies
the attestation information in order to get assurance about
the execution of UTP. Note that UTP is more than just
TCG-style attestation [16] (see also the Appendix): If the
verification succeeds, the server knows that a uni-directional
trusted path to the human user has been established and that
the transaction can be processed.

Advantages: The realization of UTP as a small trusted
program using a secure execution mode of the CPU has
some advantages over solutions based on a secure OS:
• Smaller trusted code: The overall trusted computing base

(TCB) is even smaller than a secure user interface system
on top of a secure operating system kernel (e.g., [5], [6]).
A lot of functionality can be “out-sourced” to the un-
trusted environment, including the initialization of certain
hardware resources. Moreover, in contrast to a security
kernel or hypervisor, our design requires no persistent
code when no sensitive transactions are in progress.
• Higher adoption rate: The chances of adoption are much

higher since our system can be readily deployed with off-
the-shelf operating systems that are used today. Although
modern virtualization technology offers a compelling way
to run a secure hypervisor beneath commodity operating
systems (e.g., [17], [18], [19], [20]), monopolization of
available hardware virtualization support for security ar-
chitectures has been discouraged.

B. Transaction Confirmation with UTP

We describe the interactions and user experience of trans-
action confirmation with UTP. The basic procedure begins
after the user has prepared some kind of transaction (e.g.,
by populating a shopping cart at a web-based retailer) and
is ready to commit (e.g., make a purchase). At this point,
a well-behaved client system will invoke UTP to allow the
user to confirm that transaction, though a malicious client
system may attempt to fool the user.

Once invoked, the UTP code takes control of the keyboard
and display and shows a summary of the transaction that is
about to be committed. During this time the normal (un-
trusted) OS is suspended, and the UTP code executes in the
secure execution mode of the CPU (c.f. step 3 in Figure 1).
Displaying the transaction summary and requesting an active
confirmation from the user is an essential step that reveals
the human user’s intentions. Otherwise, the user may be
tricked into confirming anything. Note that the practical
details of how to summarize the transaction are likely best
implemented on the server side, either per-web server or
as a standard mechanism that is adopted across several
web-based service providers. It may also be an option to
implement client-side logic on a per-provider basis, if the

user has a finite set of service providers with which she
engages in sensitive transactions. One can even imagine the
content of the confirmation page being rendered somewhere
in the cloud, with a static image being transmitted to the
UTP environment on the client system.2

Next, the user is prompted to perform the actual con-
firmation. If no attack is taking place, then the user is
indeed looking at a legitimate summary of the proposed
transaction, and the UTP code will be the only code that can
receive the user’s forthcoming input. This confirmation is the
user’s opportunity to realize that an attacker has tampered
with her session. The server wants to be sure that the user
actually verified the summary. From a technical perspective,
the actual confirmation act may be as simple as pressing
“enter” to generate a physical keyboard interrupt, but we also
wish to avoid habituation by users. Interesting designs may
include manually entering the final invoice amount; entering
a short, random confirmation code; or typing the word YES
to continue. The precise design is outside the scope of this
paper, but it should be selected in response to an evidence-
based user study to determine which is least intrusive while
providing the desired security properties. We discuss these
issues again in our security analysis (§V-A).

Once the user has viewed the transaction summary and
confirmed her intention to commit the transaction, UTP
assembles the necessary data to generate the attestation
information and terminates its execution. The CPU exits the
isolated environment and resumes the normal OS. The client
(e.g., the web browser) sends the attestation information via
a secure channel to the remote server. The server accepts
the pending transaction if it is able to verify the attestation.
This indicates that the server is convinced that the legitimate
and expected software ran in an isolated environment on a
device associated with the user’s account, and that the user
successfully confirmed her desire to commit the transaction.

Our design leverages an isolated execution environment.
Some implementations of such an environment necessarily
halt the execution of other code running on the system.
For example, the user’s music will stop playing when the
confirmation dialog is displayed. An important question to
resolve is whether this disruption is good or bad. A “pro” is
that this disruption helps to get the user’s attention and focus
them on the sensitive task. A “con” is that the users may
find this requirement annoying, and vendors may object on
the grounds that it will reduce the rate of impulse purchases.

C. CAPTCHA with UTP

CAPTCHA is defined as a Completely Automated Public
Turing test to tell Computers and Humans Apart. Captchas
are commonly manifested online as distorted images, and
users are asked to type in the characters contained in the

2This type of pre-rendered design has been reviewed favorably, e.g., for
electronic voting systems [21].



images. Unfortunately, captchas are often difficult even for
humans to solve reliably [3]. Moreover, without a secure
execution environment, captchas can readily be inlined into
other types of free content. For example, it has been shown
that there is no shortage of users willing to solve captchas
for otherwise unfettered access to adult content online [22].

Our UTP solution is capable of supporting captchas that
are simultaneously more usable and harder for attackers to
inline. In essence, a UTP-based captcha amounts to asking
the user to verify some transaction detail, e.g., to enter the
final amount of a pending purchase.

D. Mutual Authentication Overview

As we have shown, UTP can be used to give a remote
server assurance that a human user has actively entered a
confirmation to a requested action. One of our motivations
is to protect against malicious transactions resulting from
malicious transaction generators. In scenarios where the
transaction is associated with a user account (e.g., online
purchases), malware could steal the user’s account creden-
tials and send them to the attacker. Given that the user
cannot ascertain whether her system is truly in a trustworthy
state, we cannot depend upon the user to employ appropriate
discretion when deciding whether to enter sensitive data such
as passwords or account credentials. Thus, we include in our
architecture that the server is able to authenticate the client
user without solely depending on user-memorized secrets
(e.g., passwords). However, authentication is orthogonal to
our work, and we therefore refer to existing approaches that
can be easily incorporated into our design.

One option for mutual authentication is to use public
key-based credentials. For the purposes of discussion, we
consider strong device authentication based on hardware-
protected keys, e.g., asymmetric non-migratable keys resid-
ing in a Trusted Platform Module (TPM) [16]. Viable alter-
natives may include password-based authentication, where
the password is actually a high-entropy secret managed by
and accessible only to trusted code. The PAKE protocol for
password-assisted key exchange may also be used [23], [24],
[25]. Challenge-response protocols, which verify knowledge
of a shared secret between client and server, are another
option. Finally, wallet-like authentication agents [26], [27],
[28], [29], [30] automatically manage mutual authentication
between the user’s computer and a remote server. The
authentication agent (wallet) is generally executed in an
environment that isolates it from the rest of the software
stack. Hence, an authentication agent could be executed in
the secure execution mode of the CPU in the same way as
the UTP code (see also §VI).

E. Enrollment and Setup

When UTP is used in the context of confirming transac-
tions demanding (mutual) authentication, the credentials for
the authentication (e.g., password, shared secret, or public

key-based credentials) must be established in a setup phase.
The primary obstacle is enrolling the public component of
a hardware-protected keypair from the client system with
the service provider for subsequent use in client device
authentication and attestation. This challenge has two parts.
First, the hardware-protected key generation and storage
infrastructure employed must be capable of certifying that a
particular keypair was generated internally and will remain
protected. Second, this certified key must be somehow bound
to the identity of the device’s user, in order to support an
authentication procedure that remains secure even if the user
enters her password into a malicious application.

Certifying Hardware-Protected Keys: Although tech-
nically well-understood, certifying public key-based creden-
tials is challenging because a global public key infrastructure
that can scale to include all client devices does not exist.
Thus, in practice, it is likely that some form of per-service-
provider bootstrapping mechanism will be required. It may
be reasonable for organizations to partner such that the
bootstrapping mechanism can be out-sourced to a third-
party provider (with parallels to single sign-on solutions,
e.g., SAML [31] or OpenID [32]). In cases where privacy
is required (e.g., unlinkability of online purchases to the
real identity of hardware devices), cryptographic protocols
like Direct Anonymous Attestation (DAA) [33] may be used,
where a signature proves the membership to a certain group,
but does not reveal the identity of that particular member.

Binding Keypairs to Users: To enable the service
provider to associate a certified keypair with a user, users
must provide certain information about themselves (e.g.,
name, e-mail address, etc.). The initial enrollment can be
performed on a trust-on-first-use basis in many use cases.3

To bind a certified keypair to a particular user, we can use
our protected input mechanism to demonstrate to the service
provider that a human entered the relevant information. For
instance, the UTP-based captcha approach described above
can be used. This solution demonstrates that the platform
from which the human’s information originates is able to
perform operations using the private key corresponding to
the certified public key.

IV. IMPLEMENTATION

We have implemented an end-to-end system for transac-
tion confirmation using a uni-directional trusted path. Our
setup consists of a modified open-source online merchant
software package on the server side, and a browser plugin
and confirmation agent on the client side. For the client
side, we have implemented the UTP confirmation agent
based on the Flicker [15] framework, leveraging hardware
support for dynamic root of trust using Intel TXT CPU

3Of course, one person could pose as another if the impostor knows
sufficient information about the individual being impersonated and if the
target individual has never been enrolled before. Note that this risk already
exists today, and solutions that address it are outside the scope of this paper.
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Figure 2. Prototype implementation of the UTP transaction confirmation.

extensions [10] and a v1.2 TPM [16]. Figure 2 illustrates
our implementation, which we describe below. Appendix A
gives additional background.

A. Authentication and Enrollment

User and Device Authentication: We implement two-
factor client authentication by authenticating the client de-
vice as well as the client user. Thus, part of the user’s
enrolling with our web shop includes generating and reg-
istering a TPM-based Attestation Identity Keypair (AIK) to
represent the user’s client system to that service provider.4

Hardware support for protecting cryptographic keys, such as
the TPM chip [16], has reached a level of market penetration
where it is a legitimate option on which to build real-world
systems. Hence, device authentication, when implemented
leveraging the TPM, provides excellent protection against a
compromised OS being able to masquerade as a different
physical system.

Enrollment Phase: We use an AIK to represent the
identity of the client’s TPM, and thus platform. In our
implementation, we use a privacy CA to certify our AIK
as having been generated in a real TPM. Specifically for
our prototype we use privacyca.com, which provides an
interface to obtain a valid AIK certificate that can be used
by the TPM, given that the TPM manufacturer included an
Endorsement Key Credential (Figure 3). Instead of including

4A unique AIK can easily be used per-merchant, alleviating any risk of
privacy invasion by correlating transactions between different merchants.

a trusted third party as privacy CA, one might achieve
unlinkability, as mentioned before, by using DAA [33], [34].

TPM
Privacy CA

(privacyca.com)(Firefox)
Web Browser

Figure 3. Device enrollment using a Privacy CA.

B. UTP Sessions

Web server: We made minor changes to the open-
source FreeWebshop.org [35] to support UTP-based trans-
action confirmation. The server has a typical shopping cart
interface where users can add items that they wish to buy,
before proceeding to a check-out process that collects pay-
ment and shipping information. We modified the summary
page of the ordering process in FreeWebshop.org to appear
without automatically finalizing the order, and to include
one additional button, which invokes UTP-based verification.
When the user clicks this button, a server-side script that
we have implemented to manage the UTP-based verification
process is invoked. The script assembles the final verification



message to be confirmed by the user and sends it to the
client. This message consists of a simplified invoice (short
name for each product in the cart, quantities, itemized cost,
and the total cost) and a nonce to ensure the freshness of
the expected attestation covering the UTP-based verification
on the client (Figure 4). The script is responsible for the
exchange of the actual attestation messages and all data is
tunneled through the existing https connection.

Our server-side script consists of 132 lines of code.
Further, our verification program consists of 356 LoC, which
includes nonce generation and verification of the client
TPM’s Quote operation and AIK certificate.

As soon as a client confirms a specific transaction and
engages in the verification protocol, the server-side script
invokes a local verification program, that we have developed,
which generates a nonce for that particular user. The nonce
is used to ensure the freshness of the forthcoming attestation
of the UTP confirmation session on the client. The verifica-
tion program also computes the expected attestation result
with the nonce and the hash of the generated confirmation
message. Those two hashes are later verified to be included
in the hash chain that comprises the value in the TPM Quote,
which is sent during attestation from the client.

After the confirmation session on the client, an attestation
is sent back to the server, again through the https connection.
When the server-side script receives the data it parses it and
invokes the verification program to process the TPM Quote
(AIK-signed PCR aggregates), and makes the decision as to
whether this attestation represents a legitimate confirmation
of the pending transaction. Depending on the result of the
verification, the script sends a message to the client browser
(that malware may suppress), stating whether or not the
transaction is confirmed, and either commits or aborts the
transaction in the web shop’s backend.

Confirmation Agent

To confirm the purchase of the following 3 items:
1. Widget 50 $
2. Doodad 10 $
3. Thingamajig 50 $
--------------------------
TOTAL 110 $

Please type this in exactly: 3e

>: 3e

You typed in: 3e
Transaction will be confirmed.

Figure 4. Sample UTP confirmation display.

Client PC: We have developed an extension for the
Firefox web browser, which runs on the untrusted OS on the
client and is capable of sending and receiving data through
the existing https connection. We have also developed a local

Flicker
PAL

Verification program

Client utility program

Server side script

Extension

Client Browser

Figure 5. Implemented modules in the prototype.

utility program that is capable of invoking a UTP-specific,
security-sensitive PAL (Piece of Application Logic) to run
in a Flicker-based secure execution mode that is realized
using Intel TXT [15]. Additionally, the program performs
the attestation after the UTP Flicker session has completed.

In the common usage scenario, the user opens the web
site of the online web shop in Firefox and selects items
to buy. When the user is ready to submit her order, she
presses the “Submit” button on the final summary page of
the web shop. The extension then detects that this button
has been clicked (because it has a special ID) and connects
to the web server to request a nonce and a confirmation
message. When the extension receives the requested files, it
calls the client utility program, which invokes text mode in
the graphics card5 and formats the received data as inputs
for a Flicker session. Note that leveraging the untrusted
code to invoke text mode simplifies the work that must
be done inside the Flicker-protected session. When invoked,
the Flicker framework executes using TXT-based hardware
protections, with the UTP module as its PAL. Figure 5 shows
the additional modules we have implemented.

Table I shows the lines of code (LoC) for the implemented
modules on the client side, as well as the code size of
the existing Flicker framework that we build upon and that
belongs to the TCB of our UTP agent. The overall size of the
TCB (including drivers for user I/O) is only a few thousand
LoC.

Confirmation Agent (client-side): When invoked, the
UTP module displays the confirmation message. It prompts
the user to enter a randomly chosen character sequence (to
avoid habituation by simply hitting ENTER). Figure 4 shows
our sample confirmation dialog.

When the correct character sequence has been entered,
UTP extends PCR 19 with the nonce and the confirmation

5We have used text mode for simplicity, since a basic VGA driver is
straightforward to implement inside Flicker. A fully graphical confirmation
page could also be implemented, but it would require additional support
inside Flicker for the graphics mode(s) of interest.



Module Language LoC
un

tr
us

te
d Client utility program C 321

Firefox extension JavaScript 95
AIK generation program C 540
Sum 956

tr
us

te
d

Keyboard & display drivers a C 254
Flicker PAL C 260
Flicker TCB C/Assembly 741
UTP helper functions C 1080
Sum 2335

Table I
CODE SIZES ON CLIENT SIDE.

aThe given LoC include the PS/2 and VGA drivers. Support for USB
keyboards would increase the code size by 1500-2000 LoC.

text string that was provided by the server. If an incorrect
sequence is entered (or if the user chooses not to confirm
the transaction), then a failure message is extended into the
PCR. Finally, a special value denoting that the secure session
is ending is extended into PCRs 18 and 19. Though a well-
behaved OS will prevent application software from accessing
the TPM at localities 2 and 3, a malicious OS can access
those addresses. On Intel hardware, PCR 17 can only be
extended by Intel’s SINIT Authenticated Code Module (we
use Q35 SINIT 17.BIN for our prototype).

After the UTP module returns, the utility program requests
a TPM Quote that includes PCRs 17 and 18 (containing
measurements of Flicker and the UTP code), and PCR
19, which contains the hashed nonce and confirmation text
string. The nonce will also be used by the TPM for signature
generation during the attestation operation.

Confirmation Verification (server-side): The verifica-
tion script receives the data and verifies it according to the
following criteria:

• The signature is valid and from a registered TPM (i.e.,
one that has been registered during the enrollment phase).
We currently authenticate the client device based on a
simple whitelist of allowed devices, realized as a list
of known public AIKs. We note that more sophisticated
authentication methods are readily applicable (e.g., [23],
[24], [25]).
• The PCR values for Flicker and the UTP code are correct

in PCRs 17 and 18, i.e., they are on the known-good list.
• The PCR value of the nonce and confirmation text string

in PCR 19 is correct, i.e., corresponding to those sent by
the verifier for this transaction confirmation.

When all checks are successfully performed, the transaction
is accepted by the web server, and the user will see a
corresponding message in the (well-behaved) web browser.

Detailed PCR Contents: Here we describe in detail the
exact data that is extended into PCRs 17–19 in our prototype.

This helps to illustrate precisely what code and operations
comprise the software Trusted Computing Base (TCB) for
the UTP verification session.

• PCR 17: (these values represent the SINIT module for
SinitMleData.Version 6 [10]):
Extend(SHA1(SinitMleData.SinitHash |

SinitMleData.EdxSenterFlags))
Extend(SHA1(SinitMleData.BiosAcm.ID |

SinitMleData.MsegValid |
SinitMleData.StmHash |
SinitMleData.PolicyControl |
SinitMleData.LcpPolicyHash |
(OsSinitData.Capabilities,0)))

• PCR 18: (this is precisely the hash of the Flicker-based
PAL that we have written for UTP):
Extend(SinitMleData.MleHash)

• PCR 19: (these are the input and output parameters of
the UTP Flicker session, where 1 means confirmed, and
0 means not confirmed):
Extend(1|0); Extend(nonce); Extend(SHA1(ConfMsg))

C. Deployment

The design of our UTP confirmation agent is generic
and not service provider-specific. Since the confirmation
message is provided by the server for each transaction, the
service providers can adapt the content or look and feel of
these messages without the need to redesign the UTP agent.
The end user is not required to have any understanding of
the code that runs in secure mode, nor is there any need to
do per-system or per-TPM generation of expected hashes.

To use our UTP agent, the user only needs to download
the agent code and the browser extension and install it on an
OS that supports the Flicker framework (currently Linux).
The same agent code and browser extension can be reused
across many platforms. There may need to be a few variants
(e.g., Windows vs Linux, Intel vs AMD), but we do not
foresee a significant scalability problem.

To support a wide range of hardware for user input,
our prototype includes drivers for VGA display and PS/2
keyboards, and optionally USB keyboards. On PC-class
platforms there is a basic set of VGA and PS/2 I/O available
(even on systems with USB keyboards). These can be used
as a widely available fall-back in the event that more sophis-
ticated drivers for a particular platform are not available. Our
current prototype is built with the assumption that the OS is
the lowest layer of system software. However, Flicker and
UTP can coexist with virtualization software. A hypervisor
such as Xen [36] could be readily modified to enable Flicker
and thus our UTP agent.

D. Performance Evaluation

We have implemented and tested our prototype on a Dell
Optiplex 755, with a 3.0 GHz Intel Core2 Duo E6850 and
ST Microelectronics v1.2 TPM. We run Ubuntu 9.04 (i386)
and Linux kernel 2.6.30-6.



Figure 6 shows the timeline of a typical transaction
confirmation. While the system waits for user confirmation
in secure mode, the rest of the OS is halted, and thus the
user’s current work is suspended. However, all of the steps
before entering secure mode and after resuming the system
happen in background and are transparent to the user. There
is a delay time of approximately one second before the actual
confirmation summary is displayed. This time includes the
time to switch the graphics card to text mode, enter secure
mode, and initialize the video device in the Flicker PAL.
However, such a short delay is quite common across web
sites when waiting for a summary of a transaction.

Figure 6. Timeline of a typical UTP session.

V. SECURITY ANALYSIS

The security of our approach relies mainly on the follow-
ing three properties: (1) the server accepts only transactions
that are properly confirmed; (2) the UTP agent is executed in
an isolated mode where it is protected against software-based
tampering, and where it solely controls the user-centric I/O
devices (keyboard, screen, mouse); and (3) the remote server
can get assurance as to whether the confirmation agent was
actually executed in the secure mode and that the user indeed
confirmed the transaction via the keyboard. Also required
is that the user actually read the transaction summary. We
discuss different attack scenarios in the following.

A. Transactions Must Be Confirmed

The essence of our approach is that a specially designed
confirmation agent is executed in an isolated environment on
the client system to enable the user to confirm a proposed
transaction. Given the strength of our adversary (superuser
privileges on the legacy OS), we ultimately depend on the
user during a final confirmation step. Thus, the usability of
the confirmation procedure is of utmost importance.

We also briefly comment on the ability of attackers to at-
tach malicious input devices or compromise other peripheral
devices and reprogram them to masquerade as input devices.
While heuristics such as refusing to verify a transaction
on a system with more than one USB keyboard attached
may offer some level of protection, fundamentally this is
a significant challenge. However, solutions where the user
must transcribe a few digits from the display again raises the
bar for attackers, as they would also need a malicious video

interface card. This is a significantly more complex task than
compromising [37] or impersonating a USB keyboard.

In our implementation, the server sends the confirmation
message to be displayed by the UTP confirmation agent.
The agent displays the message, and requests that the user
enter a few (randomly chosen) characters as confirmation.
The adversary (e.g., malware on the user’s computer) may
modify a user-generated, or construct a new, transaction
request and send it to the server. He has this power because
he can control the execution of the web browser and OS as
long as the isolated execution environment is inactive.

Though the details of the malicious transaction are dis-
played on-screen, the user could potentially confirm the
modified transaction through an oversight. For example,
a study of transaction authentication via mobile phones
as used in some online banking applications has shown
that users do not always check the confirmation message
carefully enough [38]. Thus, the particular details of the
displayed message, and the actions required of the user that
will be interpreted as confirmation, are of great interest.

Here, we focus on the technical realization of the one-
way trusted path to realize secure transaction confirmation.
The definition of confirmation messages is up to the service
provider. The transaction confirmation may be improved by
letting the user enter a transaction-specific detail as con-
firmation instead of a few random characters. Researchers
have shown that users’ intentions are more accurately cap-
tured when the user actively re-selects the destination of a
transaction from a list of different destinations [29].

B. Isolated Execution

Our confirmation agent executes with hardware-enforced
isolation, taking advantage of Intel TXT and the Flicker
architecture to protect itself from all other code and de-
vices on the system. Our confirmation agent is specifically
constructed to take control of the user-centric I/O devices,
i.e., the keyboard and graphics display. The adversary has
two options for tampering with the confirmation agent: (1)
manipulate or replace the confirmation agent code when it
is going to be executed, or (2) execute an entirely different
application that fakes the confirmation agent display on
screen (thereby fooling the user).

In case (1) the malicious agent will execute, and the user
may be tricked into confirming a different transaction than
the one that the malicious code will attempt to submit to
the web server. However, activation of the secure mode of
Intel TXT will result in hashing the agent’s code into PCR
18. We show in §V-C that this will be detected by the web
server, which will invalidate the transaction.

In case (2) neither the confirmation agent nor the isolated
execution mode are invoked. Instead, an application in the
untrusted mode simulates the confirmation dialog. The user
is not able to detect a faked dialog since we do not have a
full trusted path with the ability to authenticate the currently



running application to the user.6 However, even if the user
confirms the faked confirmation dialog, the malicious code
is unable to cause PCR 18 to reset and be extended with
the hash of the confirmation agent expected by the server.
Again, §V-C shows how the web server detects this.

C. Remote Attestation

As our adversary has superuser privileges on the untrusted
OS, he may be able to invoke an isolated execution envi-
ronment with code and inputs of his choosing. Or, he may
fake the entire process from the perspective of the user.
In either case, our defense rests upon the contents of the
PCRs in the client system’s TPM. Specifically, PCRs 17–19
contain (respectively) hashes of the chipset-specific signed
code from the chipset vendor (e.g., Intel), the hash of the
confirmation agent code itself, and hashes summarizing the
nonce, confirmation string that was displayed to the user,
and the user’s response.

PCR 17 can only be extended by the CPU or Intel-signed
SINIT Authenticated Code Module. Thus, the remote server
can learn precisely what code was invoked in the isolated
environment and is able to detect unintended code execution
when it verifies the values during the attestation process.
This gives the web server the ability to detect and deny
transactions that originate on hardware with known chipset
or CPU vulnerabilities. Perhaps more importantly, it also
enables the web server to detect that no such operation took
place, i.e., that the isolated environment was not invoked.

PCR 18 is extended as part of the dynamic root of
trust operation that invokes the isolated execution environ-
ment (e.g., GETSEC[SENTER]). It will contain the hash
of precisely the code that received control following the
reset of the dynamic PCRs (including 17–19) and platform
reinitialization by the Authenticated Code Module. On a
well-behaved system, this will be the hash of the UTP
confirmation agent code. Again, the web server can verify
the presence of known-good code. The presence of other
code, or the absence of any measurement, signify an attack.

PCR 19 is used to summarize the anti-replay nonce
provided by the web server prior to confirmation, the con-
firmation message itself, and the user’s input in response to
the confirmation message. The user’s input must arrive via
the keyboard driver in the isolated execution environment.
Thus, solely software-based attacks are prevented. An ad-
versary’s best course of action is to physically compromise
the keyboard, which is a significantly more difficult attack
to perpetrate without physical access to the system.

D. Denial of Service

Instead of manipulating a transaction confirmation, the
adversary can block a pending confirmation by preventing
the UTP code from running on the client. The server will

6This is where a “secret picture” (or similar) mechanism can be a great
aid if users can be trained to exhibit sufficient diligence.

not receive any confirmation and abort the transaction after a
timeout. This is a denial-of-service (DoS) attack and outside
the scope of this paper.

VI. RELATED WORK

E-EMV [39] is a software-based credit card application to
secure transaction confirmation, similar to our UTP agent.
They also use an enrollment phase where an AIK of the
user’s TPM is certified by a Privacy CA or in a DAA
group. However, they do not combine transaction details
with an explicit user interaction. Users can still be tricked
into authorizing malicious transactions. Our approach in-
cludes a transaction summary and user-entered text into the
attestation. Moreover, their approach needs a persistently
running security kernel and a full trusted path.

Phoolproof Phishing [40] seeks to strengthen user authen-
tication to web sites by leveraging users’ smartphones as
a store for public key-based authentication credentials that
serve as an additional factor for authentication. Dedicated
hardware solutions for transaction confirmation have also
been proposed. The IBM ZTIC [41] is a small USB device
that is assumed to share cryptographic keys with the user’s
financial institution. It includes a screen to display transac-
tion details to the user, and buttons for accepting or aborting
the transaction. Our design is similar to both of these in
that we also use public key-based authentication credentials
stored in the system’s TPM. However, our design has the
advantage that the user is not required to carry around or
manipulate multiple devices during a transaction.

Several wallet-based approaches [26], [27], [28], [29],
[30] have been proposed to secure user authentication or
protect login credentials. They either require a trustworthy
external device as an out-of-band channel for authenti-
cation [28], [42], [43], or require a secure kernel [26],
[27] that isolates the underlying operating system and its
complex software stack from the wallet. Many existing
authentication agent proposals are prototyped using off-the-
shelf virtual machine monitors, which are not without their
share of vulnerabilities, e.g., [44], [45], [46]. In contrast,
TruWalletM [30] uses M-Shield [47], a hardware-provided
secure execution mode on a mobile phone, to protect login
credentials of a user. The wallet is only invoked during login
and executed in isolation in the secure mode. Although some
use cases of UTP require authentication, this is orthogonal
to our work. It should be a moderate effort to port their
authentication agent code to Flicker and, hence, integrate
them for the authentication step in our design.

SpyBlock [27] is a browser extension that requests au-
thentication and confirmation of transactions from the user
in a separate confirmation agent. However, the confirmation
agent relies on a trusted window (full trusted path) and a
secure hypervisor platform. In contrast, in our design we
use the secure execution mode of the CPU to enable UTP



to execute exclusively during confirmation. Hence, the con-
firmation agent in our design depends on less trusted coded
and is less disruptive to existing software environments.

The Not-a-Bot system employs an attester that certifies
network traffic as originating in a system within some
threshold time period after legitimate user input [48]. While
an interesting design, the presented prototype includes a hy-
pervisor and additional operating systems and thus includes
a large TCB. Further, the binding between traffic and user
input is temporal only – malware can readily wait and send
all of its traffic only while the user types.

Grawrock describes the concept of a Verification Model
possible on platforms that include support for dynamic root
of trust [49]. The system that we describe in this paper
can be considered a concrete realization of these abstract
concepts, complete with evaluation and several use cases.

Dynamic root of trust on x86 systems is not the only
mechanism available today for isolated execution. For ex-
ample, ARM TrustZone [50] and Texas Instruments’ M-
Shield [47] offer similar functionalities, especially when
paired with a Mobile Trusted Monitor. Nokia’s OnBoard
Credentials project explores some of the capabilities of
these platforms [51]. The Cell Broadband Engine [52], used
in Sony’s PlayStation 3, offers eight processing cores that
can be operated in a secure execution mode, isolated from
each other and from the main core that runs the OS. We
believe that our proposed solution should be portable to
those platform architectures with manageable effort.

VII. CONCLUSION

We show how the combination of an on-demand isolated
execution environment and temporal control of user-centric
I/O devices enables construction of a mechanism for a
one-way trusted path, and show that it is practical and
deployable on commodity systems today. The uni-directional
trusted path constructed by our system extends from the
client system to the remote server. Although the immediate
feedback available to the client user remains susceptible
to manipulation by malware, our system enables service
providers to gain additional assurance that client transactions
are initiated at the behest of a human user on the computer,
and not via malware such as transaction generators. Over the
long term, users will be less likely to become the victims of
a scam. Hence, service providers have high incentives for
deployment, as they can simply offer UTP as a download
for their users.
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APPENDIX

The Trusted Platform Module is an inexpensive, passive
device that can serve as a hardware root of trust [16]. TPMs
include a bank of Platform Configuration Registers (PCRs)
that can be extended with measurements of code or data. A
measurement m← SHA1 (data) represents a cryptographic
hash over an object of interest. An extend operation is
defined as PCRnew ← SHA1 (PCRold ||m).

After measurements are accumulated into a hash chain
inside one or more PCRs, sealing and attestation become
possible. In a seal operation, a cryptographic key is access-
controlled based on the values of one or more PCRs. With
an appropriate software architecture, this can render data
available only to certain software stacks. In an attestation, a
digitally signed PCR aggregate called a Quote is produced.
The asymmetric key used to sign the Quote is called an
Attestation Identity Key (AIK), which can be linked to a
particular TPM instance using the Endorsement Key (EK)
certificate provided by reputable TPM vendors.

Newer x86 platforms (circa 2007) equipped with a v1.2
TPM and certain CPU and chipset enhancements can also
create a dynamic root of trust for measurement (DRTM).
A DRTM operation (1) reinitializes the CPU and memory
controller into a known-good state and (2) resets dynamic
PCRs inside the TPM into a distinguished state, enabling
the possibility to bootstrap isolated execution with data
sealing and attestation capabilities even in the face of a
compromised OS or virtual machine monitor (VMM).


