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Abstract. The address translation subsystem of operating systems, hypervisors,
and virtual machine monitors must correctly enforce address space separation
in the presence of adversaries. The size, and hierarchical nesting, of the data
structures over which such systems operate raise challenges for automated model
checking techniques to be fruitfully applied to them. We address this problem by
developing a sound and complete parametric verification technique that achieves
the best possible reduction in model size. Our results significantly generalize prior
work on this topic, and bring interesting systems within the scope of analysis. We
demonstrate the applicability of our approach by modeling shadow paging mech-
anisms of Xen version 3.0.3 and ShadowVisor, a research hypervisor developed
for the x86 platform.

1 Introduction

A common use of protection mechanisms in systems software is to prevent one execu-
tion context from accessing memory regions allocated to a different context. For exam-
ple, hypervisors, such as Xen [5], are designed to support memory separation not only
among guest operating systems, but also between the guests and the hypervisor itself.
Separation is achieved by an address translation subsystem that is self-contained and
relatively small (around 7000 LOC in Xen version 3.0.3). Verifying security properties
of such separation mechanisms is both: (i) important, due to their wide deployment in
environments with malicious guests, e.g., the cloud; and (ii) challenging, due to their
complexity. Addressing this challenge is the subject of our paper.

A careful examination of the source code for two hypervisors – Xen and Shad-
owVisor, a research hypervisor – reveals that a major source of complexity in separa-
tion mechanisms is the size, and hierarchical nesting, of the data-structures over which
they operate. For example, Xen’s address translation mechanism involves multi-level
page tables where a level has up to 512 entries in a 3-level implementation, or up to
1024 entries in a 2-level implementation. The number of levels is further increased
by optimizations, such as context caching (see Section 3 for a detailed description).
Since the complexity of model checking grows exponentially with the size of these
data-structures, verifying these separation mechanisms directly is intractable.

We address this problem by developing a parametric verification technique that is
able to handle separation mechanisms operating over multi-level data structures of ar-
bitrary size and with arbitrary number of levels. Specifically, we make the following
contributions. First, we develop a parametric guarded command language (PGCL+) for
modeling hypervisors and adversaries. In particular, PGCL+ supports: (i) nested para-
metric arrays to model data structures, such as multi-level page tables, where the pa-
rameters model the size of page tables at each level; and (ii) whole array operations to
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model an adversary who non-deterministically sets the values of data structures under
its control.

In addition, the design of PGCL+ is driven by the fact that our target separation
mechanisms operate over tree-shaped data structures in a row independent and hier-
archically row uniform manner. Consider a mechanism operating over a tree-shaped
multi-level page table. Row independence means that the values in different rows of a
page table are mutually independent. Hierarchical row uniformity implies that: (a) for
each level i of the page table, the mechanism executes the same command on all rows
at level i; (b) the command for a row at level i involves recursive operation over at most
one page table at the next level i+1; (c) the commands for distinct rows at level i never
lead to operations over the same table at level i+1. Both row independence and hierar-
chical uniformity are baked syntactically into PGCL+ via restricted forms of commands
and nested whole array operations.

Second, we propose a parametric specification formalism for expressing security
policies of separation mechanisms modeled in PGCL+. Our formalism is able to express
both safety and liveness properties (via a new logic PT SL+) that involve arbitrary nesting
of quantifiers over multiple levels of the nested parametric arrays in PGCL+.

Third, we prove a set of small model theorems that roughly state that for any system
M expressible in PGCL+, and any security property ϕ in our specification formalism,
an instance of M with a data structure of arbitrary size satisfies ϕ iff the instance of M
where the data structure has 1 element at every level satisfies ϕ. These theorems yield
the best possible reduction – e.g., verifying security of a separation mechanism over an
arbitrarily large page table is reduced to verifying the mechanism with just 1 page table
entry at each level. This ameliorates the lack of scalability of verification due to data
structure size. For brevity, we defer proofs to the full version [17].

Finally, we demonstrate the effectiveness of our approach by modeling, and verify-
ing, shadow paging mechanisms of Xen version 3.0.3 and ShadowVisor, together with
associated address separation properties. The models were created manually from the
actual source code of these systems. In the case of ShadowVisor, our initial verification
identified a previously unknown vulnerability. After fixing the vulnerability, we are able
to verify the new model successfully.

The rest of the paper is organized as follows. Section 2 surveys related work. Sec-
tion 3 presents an overview of address translation mechanisms and associated separation
properties. Section 4 presents the parametric modeling language, the specification logic,
as well as the small model theorems and the key ideas behind their proofs. Section 5
presents the case studies. Finally, Section 6 presents our conclusions.

2 Related Work

Parametric verification has been applied to a wide variety of problems [10, 11, 13, 15],
notably to verify cache coherence protocols [9, 11, 12, 14, 19]. However, we are distin-
guished by the focus on security properties in the presence of an adversary (or, attacker).
Existing formalisms for parameterized verification of data-independent systems either
do not allow whole-array operations [23], or restrict them to a reset or copy operation
that updates array elements to fixed values [24]. Neither case can model our adversary.
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Pnueli et al [26], Arons et al., [4], and Fang et al. [16] investigate finite bounded-
data systems, which support stratified arrays that map to Booleans, a notion similar to
our hierarchical arrays. However, they consider a restricted logic that allows for safety
properties and a limited form of liveness properties referred to as response properties.
In contrast, we consider both safety and more expressive liveness properties that can
include both next state and until operators in addition to the forall operator. Moreover,
the cutoffs of their small model theorems are a function of the type signatures, number
of quantified index variables, and other factors. When instantiated with the same types
used in our language, their small model theorems have larger cutoffs than our own.
By focusing on the specific case of address translation systems and address separation
properties, we are able to arrive at smaller cutoffs.

This paper generalizes our prior work [18] from a single parametric array to a tree
of parametric arrays of arbitrary depth. The generalization requires new conceptual and
technical insights and brings interesting systems (such as multi-level paging and context
caching as used in Xen) within the scope of analysis. The concept of hierarchical row
uniformity did not arise in the previous work. Moreover, our language PGCL+ supports
a more general form of guarded commands. At a technical level, the proofs are more
involved because of the generality of the language and the logic. In particular, the use
of mutual recursion in the definition of the programming language necessitates the use
of mutual induction in establishing several key lemmas.

Neumann et al. [25], Rushby [27], and Shapiro and Weber [28] propose verifying
the design of secure systems by manually proving properties using a logic and without
an explicit adversary model. A number of groups [20, 22, 29] have employed theorem
proving to verify security properties of OS implementations. Barthe et al. [6] formalized
an idealized model of a hypervisor in the Coq proof assistant and Alkassar et al. [1, 2]
and Baumann et al. [7] annotated the C code of a hypervisor and utilized the VCC
verifier to prove correctness properties. Our approach is based on automatic verification
via model checking.

3 Address Space Translation and Separation

In this section, we give an overview of the systems we target, viz., address space trans-
lation schemes, and the properties we verify, viz., address separation.

3.1 Address Space Translation

Consider a system with memory sub-divided into pages. Each page has a base address
(or address, for short). Address space translation maps source addresses to destination
addresses. In the simplest setting, it is implemented by a single-level “page table” (PT).
Each row of the PT is a pair (x,y) such that x is a source base address and y is its
corresponding destination base address.

More sophisticated address translation schemes use multi-level PTs. A n-level PT
is essentially a set of tables linked to form a tree of depth n. Specifically, each row
of a table at level i contains either a destination address, or the starting address of a
table at level i + 1. In addition to addresses, rows contain flags (e.g., to indicate if the
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Fig. 1. Typical two-level page table structure.

row contains a destination addresses or the address of another table). We now present a
concrete example.

Example 1. Figure 1 shows a typical two-level address translation. A 2-level PT con-
sists of a top level Page Directory Table (PDT ) and a set of leaf PTs. A source address
i is split into two parts, whose sizes are determined during the design of the PT. Let
i = (i1, i2). To compute the destination address corresponding to i, we first find the row
(i1,o1) in the PDT . The entry o1 contains an address a1, a Page Size Extension flag
PSE, and a present flag PRESENT . If PRESENT is unset, then there is no destination
address corresponding to i. Otherwise, if PSE is set, then the destination address is a1.
Finally, if PSE is unset, we find the entry (i2,a2) in the table located at address a1,
and return a2 as the destination address. Note the use of PSE and PRESENT to disam-
biguate between different types of rows. Also, note the dual use of the address field a1
as either a destination address or a table address.

3.2 Address Space Separation

While the systems we target are address translation schemes, the broad class of proper-
ties we aim for is address separation. This is a crucial property – in essence requiring
that disjoint source addresses spaces be mapped to disjoint destination address spaces.
Our notion of address separation is conceptually similar to that used by Baumann et
al. [7]. Formally, an address translation scheme M violates separation if it maps ad-
dresses a1 and a2 from two different source address spaces to the same destination
address. For example, an OS’s virtual memory manager enforces separation between
the address spaces of the OS kernel and various processes. Address space separation is
a safety property since its violation is exhibited by a finite execution.
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The key technique, used by hypervisor address translation schemes, to ensure mem-
ory separation is “shadowing”. For example, a separation kernel employs shadow pag-
ing to isolate critical memory regions from an untrusted guest OS. In essence, the kernel
maintains its own trusted version of the guest’s PT, called the shadow PT or sPT. The
guest is allowed to modify its PT. However, the kernel interposes on such modifications
and checks that the guest’s modifications do not violate memory separation. If the check
succeeds, the sPT is “synchronized” with the modified guest’s PT.

Multi-level PTs are the canonical tree-shaped data-structures that motivates our
work. In real systems, such PTs are used for various optimizations. One use is to trans-
late large source address spaces without the overhead of one PT entry for each source
base address. Another use is to implement context caching, a performance optimiza-
tion – used by both Xen and VMWare – for shadow paging. Normally, every virtual
address space (or, context) has its own PT, e.g., for a hypervisor, each process running
on each guest OS has a separate context. Suppose that all context PTs are shadowed to
a single sPT. When the context changes (e.g., when a new process is scheduled to run),
the sPT is re-initialized from the PT of the new context. This hampers performance.
Context caching avoids this problem by shadowing each context PT to a separate sPT.
In essence, the sPT itself becomes a multi-level PT, where each row of the top-level PT
points to a PT shadowing a distinct context.

Our goal is to verify address separation for address translation schemes that operate
on multi-level PTs with arbitrary (but fixed) number of levels and arbitrary (but fixed)
number of rows in each table, where each row has an arbitrary (but fixed) number of
flags. These goals crucially influence the syntax and semantics of PGCL+ and our spec-
ification formalism, and our technical results, which we present next.

4 Definitions of PGCL+ and PT SL+

In this section, we present our language PGCL+ and our specification formalism for
modeling programs and security properties, respectively.

4.1 PGCL+ Syntax

All variables in PGCL+ are Boolean. The language includes nested parametric arrays to
a finite depth d. Each row of an array at depth d is a record with a single field F, a finite
array of Booleans of size qd . Each row of an array at depth z (1 ≤ z < d) is a structure
with two fields: F, a finite array of Booleans of size qz, and P an array at depth z + 1.
Our results do not depend on the values of d and {qz | 1≤ z≤ d}, and hence hold for
programs that manipulate arrays that are nested (as describe above) to arbitrary depth,
and with Boolean arrays of arbitrary size at each level. Also, Boolean variables enable
us to encode finite valued variables, and arrays, records, relations and functions over
such variables.

Let 1 and 0 be, respectively, the representations of the truth values true and false.
Let B be a set of Boolean variables, i1, . . . ,id be variables used to index into P1, . . . ,Pd ,
respectively, and n1, . . . ,nd be variables used to store the number of rows of P1, . . . ,Pd ,
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Natural Numerals K

Boolean Variables B

Parametric Index Variables i1, . . . ,id
Parameter Variables n1, . . . ,nd
Expressions E ::= 1 | 0 | ∗ | B | E∨E | E∧E | ¬E
Param. Expressions (1≤ z≤ d) Êz ::= E | P[i1] . . .P[iz].F[K] | Êz∨ Êz | Êz∧ Êz

| ¬Êz
Instantiated Guarded Commands G ::= GC(Kd)
Guarded Commands GC ::= E ? C1 : C1

| GC ‖ GC Parallel
Commands (depth 1≤ z≤ d) Cz ::= B := E (if z = 1) Assignment

| for iz do Êz ? Ĉz : Ĉz Parametric for
| Cz;Cz Sequencing
| skip Skip

Param. Commands (1≤ z≤ d) Ĉz ::= P[i1] . . .P[iz].F[K] := Êz Array assign
| Ĉz; Ĉz Sequencing
| Cz+1 (if z < d) Nesting

Fig. 2. PGCL+ Syntax, z denotes depth.

respectively. The syntax of PGCL+ is shown in Figure 2. PGCL+ supports natural num-
bers, Boolean variables, propositional expressions over Boolean variables and F ele-
ments, guarded commands that update Boolean variables and F elements, and parallel
composition of guarded commands. A skip command does nothing. A guarded com-
mand e ? c1 : c2 executes c1 or c2 depending on if e evaluates to true or false. We
write e ? c to mean e ? c : skip. The parallel composition of two guarded commands
executes by non-deterministically picking one of the commands to execute. The sequen-
tial composition of two commands executes the first command followed by the second
command. Note that commands at depth z+1 are nested within those at depth z.

Language Design Values assigned to an element of an F array at depth z can depend
only on: (i) other elements of the same F array; (ii) elements of parent F arrays along the
nesting hierarchy (to ensure hierarchical row uniformity); and (iii) Boolean variables.
Values assigned to Boolean variables depend on other Boolean variables only. This is
crucial to ensure row-independence which is necessary for our small model theorems
(cf. Sec. 4.5).

4.2 ShadowVisor Code in PGCL+

We use ShadowVisor as a running example, and now describe its model in PGCL+.
ShadowVisor uses a 2-level PT scheme. The key unbounded data structures are the
guest and shadow Page Directory Table (gPDT and sPDT) at the top level, and the
guest and shadow Page Tables (gPTs and sPTs) at the lower level. Since each shadow
table has the same size as the corresponding guest table, we model them together in the
2-level PGCL+ parametric array.
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shadow page fault ≡
for i1 do

PDT[i1].F[gPRESENT]∧PDT[i1].F[gPSE]∧
PDT[i1].F[gADDR] < MEM LIMIT−MPS PDT ?
PDT[i1].F[sADDR] := PDT[i1].F[gADDR];

for i2 do

PDT[i1].F[gPRESENT]∧PDT[i1].PT[i2].F[gPTE PRESENT]∧
PDT[i1].PT[i2].F[gPTE ADDR] < MEM LIMIT−MPS PT ?
PDT[i1].PT[i2].F[sPTE ADDR] := PDT[i1].PT[i2].F[gPTE ADDR];

shadow invalidate page ≡
for i1 do

(PDT[i1].F[sPRESENT]∧¬PDT[i1].F[gPRESENT])∨
(PDT[i1].F[sPRESENT]∧PDT[i1].F[gPRESENT]∧
(PDT[i1].F[sPSE]∨PDT[i1].F[gPSE])) ?
PDT[i1].F[sPDE] := 0;

for i1 do

PDT[i1].F[sPRESENT]∧PDT[i1].F[gPRESENT]∧
¬PDT[i1].F[gPSE]∧¬PDT[i1].F[sPSE] ?
for i2 do

PDT[i1].PT[i2].F[sPTE] := 0;

adversary ≡
for i1 do

PDT[i1].F[gPDE] := ∗;
for i2 do

PDT[i1].PT[i2].F[gPTE] := ∗;

shadow new context ≡
for i1 do

PDT[i1].F[sPDE] := 0;

Fig. 3. ShadowVisor model in PGCL+.
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For simplicity, let PDT be the top-level array P. Elements PDT[i1].F[gPRESENT] and
PDT[i1].F[gPSE] are the present and page size extension flags for the i1-th gPD en-
try, while PDT[i1].F[gADDR] is the destination address contained in the i1-th gPD en-
try. Elements sPRESENT, sPSE, and sADDR are defined analogously for sPD entries.
Again for simplicity, let PDT[i1].PT be the array P[i1].P. Elements gPTE PRESENT and
gPTE ADDR of PDT[i1].PT[i2].F are the present flag and destination address contained in
the i2-th entry of the PT pointed to by the i1-th gPDT entry. Elements sPTE PRESENT
and sPTE ADDR of PDT[i1].PT[i2].F are similarly defined for the sPDT. Terms gPDE
refers to the set of elements corresponding to a gPDT entry (i.e., gPRESENT, gPSE, and
gADDR). Terms gPTE, sPDE and sPTE are defined similarly for the gPT, sPDT, and sPT,
respectively.

Our ShadowVisor model (see Figure 3) is a parallel composition of four guarded
commands shadow page fault, shadow invalidate page, shadow new context,
and adversary. Command shadow page fault synchronizes sPDT and sPT with
gPDT and gPT when the guest kernel: (i) loads a new gPT, or (ii) modifies or cre-
ates a gPT entry. To ensure separation, shadow page fault does not copy addresses
from the gPT or gPDT that allow access to addresses at or above MEM LIMIT. This re-
quires two distinct checks depending on the level of the table since pages mapped in
the PDT are of size MPS PDT and pages mapped in the PT are of size MPS PT. Com-
mand shadow invalidate page invalidates entries in the sPD and sPT (by setting to
zero) when the corresponding guest entries are not present, the PSE bits are inconsis-
tent, or if both structures are consistent and the guest OS invalidates a page. Command
shadow new context initializes a new context by clearing all the entries of the sPD.
Finally, command adversary models the attacker by arbitrarily modifying every gPD
entry and every gPT entry.

For brevity, we write c to mean 1 ? c. Since all PGCL+ variables are Boolean, we
write x < C to mean the binary comparison between a finite valued variable x and a
constant C.

4.3 PGCL+ Semantics
We now present the operational semantics of PGCL+ as a relation on stores. Let B be
the truth values {true, false}. Let N denote the set of natural numbers. For two natural
numbers j and k such that j ≤ k, we write [ j,k] to mean the set of numbers in the
closed range from j to k. For any numeral k we write dke to mean the natural number
represented by k in standard arithmetic. Often, we write k to mean dke when the context
disambiguates such usage.

We write Dom( f ) to mean the domain of a function f ; (t, t′) denotes the concate-
nation of tuples t and t′; ti, j is the subtuple of t from the ith to the jth elements, and ti
means ti,i. Given a tuple of natural numbers t = (t1, . . . , tz), we write ⊗(t) to denote the
set of tuples [1, t1]×·· ·× [1, tz]. Recall that, for 1 ≤ z ≤ d, qz is the size of the array F
at depth z. Then, a store σ is a tuple (σB,σn,σP) such that:

– σB : B→ B maps Boolean variables to B;
– σn ∈ Nd is a tuple of values of the parameter variables;
– σP is a tuple of functions defined as follows:

∀z ∈ [1,d] �σ
P
z :⊗(σn

1,z,qz)→ B
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σ
n = (dk1e, . . . ,dkde) {σ} gc {σ′}

{σ} gc(k1, . . . ,kd) {σ′}
Parameter Instantiation

{σ} c {σ′′} {σ′′} c′ {σ′}
{σ} c;c′ {σ′}

Sequential
{σ} skip {σ}

Skip

σ
n
1,z = (1z−1,N) ê ? ĉ1 : ĉ2 ∈ (Êz ? Ĉz : Ĉz)[i1 7→ 1] . . . [iz−1 7→ 1]
∀y ∈ [1,N] �{σ � (1z−1,y)} (ê ? ĉ1 : ĉ2)[iz 7→ 1] {σ′ � (1z−1,y)}

{σ} for iz do ê ? ĉ1 : ĉ2 {σ′}
Unroll

〈e,σ〉 → true∧{σ} c1 {σ′}
_
〈e,σ〉 → false∧{σ} c2 {σ′}

{σ} e ? c1 : c2 {σ′}
GC

〈e,σ〉 → t

{σ} b := e {σ[σB 7→ σ
B[b 7→ t]]}

Assign
{σ} gc {σ′}∨{σ} gc′ {σ′}
{σ} gc ‖ gc′ {σ′}

Parallel

ê ∈ Êz 〈ê,σ〉 → t (dk1e, . . . ,dkze,dre) ∈ Dom(σP
z )

{σ} P[k1] . . .P[kz].F[r] := ê {σ[σP 7→ σ
P[σP

z 7→ [σP
z [(dk1e, . . . ,dkze,dre) 7→ t]]]]}

P. Assign

Fig. 4. Rules for commands

We omit the superscript of σ when it is clear from the context. The rules for evaluat-
ing PGCL+ expressions under stores are defined inductively over the structure of PGCL+

expressions, and shown in Figure 5. To define the semantics of PGCL+, we first present
the notion of store projection.

〈1,σ〉 → true 〈0,σ〉 → false 〈∗,σ〉 → true 〈∗,σ〉 → false

b ∈ dom(σB)

〈b,σ〉 → σ
B(b)

〈e,σ〉 → t

〈¬e,σ〉 → [¬]t
(dk1e, . . . ,dkze,dre) ∈ Dom(σP

z )

〈P[k1] . . .P[kz].F[r],σ〉 → σ
P
z (dk1e, . . . ,dkze,dre)

〈e,σ〉 → t 〈e′,σ〉 → t ′

〈e∨e′,σ〉 → t[∨]t ′
〈e,σ〉 → t 〈e′,σ〉 → t ′

〈e∧e′,σ〉 → t[∧]t ′

Fig. 5. Rules for expression evaluation. [∧], [∨], and [¬] denote logical conjunction, disjunction,
and negation, respectively.

We overload the 7→ operator as follows. For any function f : X→Y , x∈X and y∈Y ,
we write f [x 7→ y] to mean the function that is identical to f , except that x is mapped
to y. X[y 7→ w] is a tuple that equals X, except that (X[y 7→ w])y = w. For any PGCL+
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expression or guarded command X, variable v, and expression e, we write X[v 7→ e] to
mean the result of replacing all occurrences of v in X simultaneously with e. For any
z ∈ N, 1z denotes the tuple of z 1’s.

Definition 1 (Store Projection) Let σ = (σB,σn,σP) be any store and 1 ≤ z ≤ d. For
k = (k1, . . . ,kz)∈⊗(σn

1, . . . ,σ
n
z ) we write σ � k to mean the store (σB,σm,σQ) such that:

1. σm = σn[1 7→ 1][2 7→ 1] . . . [z 7→ 1]
2. ∀y ∈ [1,z] �∀X ∈ Dom(σQ

y ) �σ
Q
y (X) = σP

y (X [1 7→ k1][2 7→ k2] . . . [y 7→ ky])

3. ∀y ∈ [z+1,d] �∀X ∈ Dom(σQ
y ) �σ

Q
y (X) = σP

y (X [1 7→ k1][2 7→ k2] . . . [z 7→ kz])

Note: ∀z ∈ [1,d] �∀k ∈ ⊗(σn
1, . . . ,σ

n
z ) �σ � k = (σ � k) � 1z.

Intuitively, σ � k is constructed by retaining σB, changing the first z elements of σn

to 1 and leaving the remaining elements unchanged, and projecting away all but the
ky-th row of the parametric array at depth y for 1 ≤ y ≤ z. Note that since projection
retains σB, it does not affect the evaluation of expressions that do not refer to elements
of P.

Store Transformation. For any PGCL+ command c and stores σ and σ′, we write
{σ} c {σ′} to mean that σ is transformed to σ′ by the execution of c. We define
{σ} c {σ′} via induction on the structure of c, as shown in Figure 4.

The “GC” rule states that σ is transformed to σ′ by executing the guarded command
e ? c1 : c2 if: (i) either the guard e evaluates to true under σ and σ is transformed to σ′

by executing the command c1; (ii) or e evaluates to false under σ and σ is transformed
to σ′ by executing c2 .

The “Unroll” rules states that if c is a for loop, then {σ} c {σ′} if each row of σ′

results by executing the loop body from the same row of σ. The nesting of for-loops
complicates the proofs of our small model theorems. Indeed, we require to reason using
mutual induction about loop bodies (Êz ? Ĉz) and commands (Cz), starting with the loop
bodies at the lowest level, and moving up to commands at the highest level.

4.4 Specification Formalism

We support both reachability properties and temporal logic specifications. Reachability
properties are expressed via “state formulas”. In addition, state formulas are also used
to specify the initial condition under which the target system begins execution. The
syntax of state formulas is defined in Figure 6. We support three types of state formulas
– universal, existential, and generic. Specifically, universal formulas allow only nested
universal quantification over P, existential formulas allow arbitrary quantifier nesting
with at least one ∃, while generic formulas allow one of each.

Temporal logic specifications are expressed in PT SL+, a new logic we propose in
this paper. In essence, PT SL+ is a subset of the temporal logic ACTL* [8] with USF
as atomic propositions. The syntax of PT SL+ is defined in Figure 6. The quantifica-
tion nesting allowed in our specification logic allows expressive properties spanning
multiple levels of P. This will be crucial for our case studies, as shown in Sec. 5.
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Basic Propositions BP ::= b , b ∈ B | ¬BP | BP∧BP
Parametric Propositions PP(i1, . . . ,iz) ::= {P[i1] . . .P[iz].F[r] | dre ≤ qz}

| ¬PP(i1, . . . ,iz)
| PP(i1, . . . ,iz)∧PP(i1, . . . ,iz)

Universal State Formulas USF ::= BP
| ∀i1 . . .∀iz �PP(i1, . . . ,iz)
| BP∧∀i1 . . .∀iz �PP(i1, . . . ,iz)

Existential State Formulas ESF ::= BP
|Æ1i1 . . .Æziz �PP(i1, . . . ,iz)
| BP∧Æ1i1 . . .Æziz �PP(i1, . . . ,iz)

Generic State Formulas GSF ::= USF | ESF | USF∧ESF
PT SL+ Path Formulas TLPF ::= TLF | TLF∧TLF | TLF∨TLF

| X TLF | TLF U TLF
PT SL+ Formulas TLF ::= USF | ¬USF | TLF∧TLF

| TLF∨TLF | A TLPF

Fig. 6. Syntax of PT SL+ (1≤ z≤ d). In ESF, Æy is ∀ or ∃, at least one Æy is ∃.

ShadowVisor Security Properties in PT SL+. ShadowVisor begins execution with
every entry of the sPDT and sPT set to not present. This initial condition is stated in the
following USF state formula:

ϕinit , ∀i1,i2 � ¬PDT[i1].F[sPRESENT]∧¬PDT[i1].PT[i2].F[sPTE PRESENT]

ShadowVisor’s separation property states that the physical addresses accessible by
the guest must be less than MEM LIMIT. This requires two distinct conditions depending
on the table since pages mapped in the PDT are of size MPS PDT and pages mapped
in the PT are of size MPS PT. Given a PDT mapped page frame starting at address a,
a guest OS can access from a to a + MPS PDT and a + MPS PT for a PT mapped page
frame. Hence, to enforce separation, ShadowVisor must restrict the addresses in the
shadow page directory to be less than MEM LIMIT−MPS PDT and page table to be less
than MEM LIMIT−MPS PT. Note that we are making the reasonable assumption that
MEM LIMIT > MAX PDT and MEM LIMIT > MAX PT to avoid underflow. This security
property is stated in the following USF state formula:

ϕsep , ∀i1,i2 � (PDT[i1].F[sPRESENT]∧PDT[i1].F[sPSE]⇒
(PDT[i1].F[sADDR] < MEM LIMIT−MPS PDT))∧
(PDT[i1].F[sPRESENT]∧¬PDT[i1].F[sPSE]∧
PDT[i1].PT[i2].F[sPTE PRESENT]⇒
(PDT[i1].PT[i2].F[sADDR] < MEM LIMIT−MPT PT))

Semantics. We now present the semantics of our specification logic. We further
overload the 7→ operator such that for any PT SL+ formula π, variable x, and numeral m,
we write π[x 7→ m] to mean the result of substituting all occurrences of x in π with m.
We start with the notion of satisfaction of formulas by stores.
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Definition 2 The satisfaction of a formula π by a store σ (denoted σ |= π) is defined,
by induction on the structure of π, as follows:

– σ |= b iff σB(b) = true
– σ |= P[k1] . . .P[kz].F[r] iff (dk1e, . . . ,dkze,dre) ∈ Dom(σP

z ) and
σP

z (dk1e, . . . ,dkze,dre) = true
– σ |= ¬π iff σ 6|= π

– σ |= π1∧π2 iff σ |= π1 and σ |= π2
– σ |= π1∨π2 iff σ |= π1 or σ |= π2
– σ |= Æ1i1, . . . ,Æziz �π iff Æ1k1 ∈ [1,σn

1] . . .Æzkz ∈ [1,σn
z ]�σ � (k1, . . . ,kz) |= π[i1 7→

1] . . . [iz 7→ 1]

The definition of satisfaction of Boolean formulas and the logical operators are
standard. Parametric formulas, denoted P[k1] . . .P[kz].F[r], are satisfied if and only if
the indices k1, . . . ,kz,r are in bounds, and the element at the specified location is true.
Quantified formulas are satisfied by σ if and only if appropriate (depending on the quan-
tifiers) projections of σ satisfy the formula obtained by substituting 1 for the quantified
variables in π. We present the semantics of a PGCL+ program as a Kripke structure.

Kripke Semantics. Let gc be any PGCL+ guarded command and k ∈ Nd . We
denote the set of stores σ such that σn = k, as Store(gc(k)). Note that Store(gc(k))
is finite. Let Init be any formula and AP = USF be the set of atomic propositions.
Intuitively, a Kripke structure M(gc(k), Init) over AP is induced by executing gc(k)
starting from any store σ ∈ Store(gc(k)) that satisfies Init.

Definition 3 Let Init ∈ USF be any formula. Formally, M(gc(k), Init) is a four tuple
(S ,I ,T ,L), where:

– S = Store(gc(k)) is a set of states;
– I = {σ|σ |= Init} is a set of initial states;
– T = {(σ,σ′) | {σ}gc(k){σ′}} is a transition relation given by the operational

semantics of PGCL+; and
– L : S → 2AP is the function that labels each state with the set of propositions true

in that state; formally,

∀σ ∈ S �L(σ) = {ϕ ∈ AP | σ |= ϕ}

If φ is a PT SL+ formula, then M,σ |= φ means that φ holds at state σ in the Kripke
structure M. We use an inductive definition of |= [8]. Informally, an atomic proposition
π holds at σ iff σ |= π; A φ holds at σ if φ holds on all possible (infinite) paths starting
from σ. TLPF formulas hold on paths. A TLF formula φ holds on a path Π iff it holds
at the first state of Π; X φ holds on a path Π iff φ holds on the suffix of Π starting at
second state of Π; φ1 U φ2 holds on Π if φ1 holds on suffixes of Π until φ2 begins to
hold. The definitions for ¬, ∧ and ∨ are standard.

Simulation. For Kripke structures M1 and M2, we write M1 � M2 to mean that
M1 is simulated by M2. We use the standard definition of simulation [8] (presented in
the full version of our paper [17]). Since satisfaction of ACTL* formulas is preserved
by simulation [8], and PT SL+ is a subset of ACTL*, we claim that PT SL+ formulas are
also preserved by simulation.
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4.5 Small Model Theorems

In this section, we present two small model theorems. Both theorems relate the behavior
of a PGCL+ program when P has arbitrarily many rows to its behavior when P has a
single row. First, a definition.

Definition 1 (Exhibits). A Kripke structure M(gc(k), Init) exhibits a formula ϕ iff there
is a reachable state σ of M(gc(k), Init) such that σ |= ϕ.

The first theorem applies to safety properties.

Theorem 1 (Small Model Safety 1). Let gc(k) be any instantiated guarded command.
Let ϕ ∈ GSF be any generic state formula, and Init ∈ USF be any universal state for-
mula. Then M(gc(k), Init) exhibits ϕ iff M(gc(1d), Init) exhibits ϕ.

The second theorem is more general, and relates Kripke structures via simulation.

Theorem 2 (Small Model Simulation). Let gc(k) be any instantiated guarded
command. Let Init ∈ GSF be any generic state formula. Then M(gc(k), Init) �
M(gc(1d), Init) and M(gc(1d), Init)�M(gc(k), Init).

Since, simulation preserves PT SL+ specifications, we obtain the following immedi-
ate corrollary to Theorem 2.

Corollary 1 (Small Model Safety 2). Let gc(k) be any instantiated guarded command.
Let ϕ ∈ USF be any universal state formula, and Init ∈ GSF be any generic state for-
mula. Then M(gc(k), Init) exhibits ϕ iff M(gc(1d), Init) exhibits ϕ.

Note that Corollary 1 is the dual of Theorem 1 obtained by swapping the types of ϕ

and Init. The proofs of Theorems 1 and 2 involve mutual induction over both the struc-
ture of commands, and the depth of the parametric array P. This is due to the recursive
nature of PGCL+, where commands at level z refer to paramaterized commands at level
z, which in turn refer to commands at level z + 1. For brevity, we defer these proofs to
the full version of our paper [17].

5 Case Studies

We present two case studies – ShadowVisor and Xen – to illustrate our approach. In
addition to these two examples, we believe that our approach is, in general, applicable to
all paging systems that are strictly hierarchical. This includes paging modes of x86 [21],
and paging modes of ARM except for the super-pages [3] (due to the requirement that
16 adjacent entries must be identical).
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PT-Size Time(s) Vars Clauses
1 0.07 1816 3649
10 3.48 93503 199752
20 37.8 360275 775462
30 * * *

Table 1. ShadowVisor verification with increasing PT size. * means out of 1GB memory limit;
Vars, Clauses = # of CNF variables and clauses generated by CBMC.

5.1 ShadowVisor

Recall our model of ShadowVisor from Section 4.2 and the expression of ShadowVi-
sor’s initial condition and security properties as PT SL+ formulas from Section 4.4.
ShadowVisor’s separation property states that the physical addresses accessible by the
guest OS must be less than the lowest address of hypervisor protected memory, denoted
MEM LIMIT. This requires two distinct conditions depending on the table containing the
mapping. Pages mapped in PDTs are of size MPS PDT and pages mapped in PTs are of
size MPS PT. Given a page frame of size s with starting address a, a guest OS can access
any address in the range [a,a+ s]. Hence, subtracting the maximum page size prevents
pages from overlapping the hypervisor’s protected memory. Note that we are making
the reasonable assumption that MEM LIMIT > MPS PDT and MEM LIMIT > MPS PT to
avoid underflow.

In ShadowVisor’s original shadow page fault handler (shown in
shadow page fault original ), the conditionals allowed page directory and
page table entries to start at addresses up to MEM LIMIT. As a result, ShadowVisor
running shadow page fault original has a serious vulnerability where separation
is violated by an adversary that non-deterministically chooses an address a such that
a+MPS PDT≥ MEM LIMIT or a+MPS PT≥ MEM LIMIT.

shadow page fault original ≡
for i1 do

PDT[i1].F[gPRESENT]∧PDT[i1].F[gPSE]∧PDT[i1].F[gADDR] < MEM LIMIT ?
PDT[i1].F[sADDR] := PDT[i1].F[gADDR];

for i2 do

PDT[i1].F[gPRESENT]∧PDT[i1].PT[i2].F[gPTE PRESENT]∧
PDT[i1].PT[i2].F[gPTE ADDR] < MEM LIMIT ?
PDT[i1].PT[i2].F[sPTE ADDR] := PDT[i1].PT[i2].F[gPTE ADDR];

Verification of our initial model of ShadowVisor detected this vulnerability. The vul-
nerability exists in ShadowVisor’s design and C source code implementation. We were
able to fix the vulnerability by adding appropriate checks and verify that the resulting
model is indeed secure. We present our verification of PGCL+ models below.

Both the vulnerable and repaired ShadowVisor programs are expressible as a PGCL+

program, the initial state is expressible in USF, and the negation of the address sepa-
ration property is expressible in GSF. Therefore, Theorem 1 applies and we need only
verify the system with one table at each depth with one entry per table (i.e., a parameter
of (1,1)).
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Effectiveness of Small Model Theorems. For a concrete evaluation of the effective-
ness of our small model theorems, we verify ShadowVisor with increasing sizes of page
tables at both levels. More specifically, we created models of ShadowVisor in C (note
that a guarded command in PGCL+ is expressible in C) for various PT sizes (the sizes
at both PT levels were kept equal).

We verify two properties using CBMC1, a state-of-the-art model checker for C:

Basis: The initial state of the system ensures separation;

Inductive step: If the system started in a state that ensures separation, executing any
of the four guarded commands in the ShadowVisor model preserves separation.

By induction, this guarantees that ShadowVisor ensures separation perpetually. Our
results are shown in Table 1. Note that verification for size 1 (which is sound and com-
plete due to our small model theorem) is quick, while it blows up for even page tables of
size 30 (an unrealistically small number, implying that brute-force verification of Shad-
owVisor is intractable). The tools and benchmarks for our experiments are available at
https://www.cs.cmu.edu/~jfrankli/post12/vrfy-expr.tgz.

5.2 Xen

Next, we analyzed address separation in a model of the Xen hypervisor, built from the
source code of Xen version 3.0.3. Xen manages multiple virtual machines (VMs), each
running a guest OS instance with multiple processes (i.e., contexts). Xen maintains a
separate sPT for each context, and uses context caching (cf. Sec. 3).

We model Xen’s context cache using a nested parametric array of depth 4. At the
top level, row P1[ii] (denoted VM[i1] below) contains an entry for a particular VM’s
guest. At the next level, the array P1[i1].P2 (denoted VM[i1].Ctx below) contains an
entry for each context of the i1-th guest. Next, the array P1[i1].P2[i2].P3 (denoted
VM[i1].Ctx[i2].PDT) represents the PDT of the i2-th context of the i1-th guest OS. Fi-
nally, the array P1[i1].P2[i2].P3[i3].P4 (denoted VM[i1].Ctx[i2].PDT[i3].PT) is the PT
of the i3-th page directory table entry of the i2-th context of the i1-th guest.

Our separation property requires that the destination addresses accessible by a guest
OS are less than a pre-defined constant MEM LIMIT. We consider a natural extension of
this separation property for a context caching system with multiple VMs that states that
all VMs and contexts should be separate from VMM protected memory. This security
property is stated in the following USF formula:

ϕsep , ∀i1,i2,i3,i4�
(VM[i1].Ctx[i2].PDT[i3].F[sPRESENT]∧
VM[i1].Ctx[i2].PDT[i3].F[sPSE]⇒
(VM[i1].Ctx[i2].PDT[i3].F[sADDR] < MEM LIMIT−MPS PDT))∧
(VM[i1].Ctx[i2].PDT[i3].F[sPRESENT]∧
¬VM[i1].Ctx[i2].PDT[i3].F[sPSE]⇒
(VM[i1].Ctx[i2].PDT[i3].PT[i4].F[sADDR] < MEM LIMIT−MPS PT))

1 www.cprover.org/cbmc
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We model Xen as starting in an initial state where all entries of all of the shadow
page directory tables and shadow page tables are marked as not present. This is ex-
pressed by the following USF formula:

Init , ∀i1,i2,i3,i4 � ¬VM[i1].Ctx[i2].PDT[i3].F[sPRESENT]∧
¬VM[i1].Ctx[i2].PDT[i3].PT[i4].F[sPRESENT]

We define the Xen address translation system using context caching in PGCL+ as
follows:

XenAddressTrans ≡ shadow page fault

‖ shadow invalidate page

‖ context caching new context

‖ Xen adversary

The commands shadow page fault and shadow invalidate page gen-
eralize their counterparts for ShadowVisor over multiple VMs and con-
texts, and are omitted. The following PGCL+ guarded command implements
context caching new context .

context caching new context ≡
for i1 do

for i2 do

for i3 do

∗ ? VM[i1].Ctx[i2].PDT[i3].F[sPDE] := 0;

Note that, to model VMs and process scheduling soundly, we as-
sume non-deterministic context switching. Hence, we extend ShadowVisor’s
shadow new context to non-deterministically clear contexts.

Finally, we consider an adversary model where the the attacker has control over
an unbounded but finite number of VMs, each with a unbounded but finite number of
contexts. This adversary is therefore expressed as follows:

Xen adversary ≡
for i1 do

for i2 do

for i3 do

VM[i1].Ctx[i2].PDT[i3].F[gPDE] := ∗;
for i4 do

VM[i1].Ctx[i2].PDT[i3].PT[i4].F[gPTE] := ∗;

Our Xen model is clearly expressible in PGCL+, its initial state is expressible in
USF, and the negation of the address separation property is expressible in GSF. There-
fore, Theorem 1 applies and we need only verify the system with one table at each depth
with one entry per table (i.e., a system parameter of (1,1,1,1)).

Effectiveness of Small Model Theorems. As in the case of ShadowVisor we verify
the Xen model with increasing (but equal) sizes of page tables at both levels, and 2
VMs and 2 contexts per VM. We verify the same two properties as for ShadowVisor
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PT-Size Time(s) Vars Clauses
1 0.41 5726 13490
3 2.38 34192 80802
6 12.07 121206 286650
9 * * *

Table 2. Xen verification with increasing PT size. * means out of 1GB memory limit; Vars,
Clauses = # of CNF variables and clauses generated by CBMC.

to inductively prove that Xen ensures separation perpetually. Our results are shown in
Table 2. Note again that verification for size 1 (which is sound and complete due to
our small model theorem) is quick, while it blows up for even page tables of size 9
(an unrealistically small number, implying that brute-force verification of Xen is also
intractable).

6 Conclusion

Verifying separation properties of address translation mechanisms of operating systems,
hypervisors, and virtual machine monitors in the presence of adversaries is an important
challenge toward developing secure systems. A significant factor behind the complexity
of this challenge is that the data structures over which the translation mechanisms oper-
ate have both unbounded size and unbounded nesting depth. We developed a parametric
verification technique to address this challenge. Our approach involves a new modeling
language and specification mechanism to model and verify such parametric systems.
We applied this methodology to verify that the designs of two hypervisors – Shad-
owVisor and Xen – correctly enforce the expected security properties in the presence
of adversaries. Extending our approach to operate directly on system implementations,
and relaxing the restrictions of row independence and hierarchical row uniformity, are
areas for further investigation.
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