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ABSTRACT

Recent research demonstrates that malware can infect pe-
ripherals’ firmware in a typical x86 computer system, e.g.,
by exploiting vulnerabilities in the firmware itself or in the
firmware update tools. Verifying the integrity of peripher-
als’ firmware is thus an important challenge. We propose
software-only attestation protocols to verify the integrity of
peripherals’ firmware, and show that they can detect all
known software-based attacks. We implement our scheme
using a Netgear GA620 network adapter in an x86 PC, and
evaluate our system with known attacks.

Categories and Subject Descriptors

D.4.6 [Software]: Operating Systems—Security and Pro-
tection

General Terms

Security, Verification

Keywords

Integrity of Peripherals’ Firmware, Proxy Attack, Software-
based Attestation

1. INTRODUCTION
An often-overlooked software attack target is the firmware

that executes in peripheral devices. Attackers can exploit
vulnerabilities in peripherals’ firmware or their firmware up-
date tools [5, 7]. The malware, once inside a peripheral, may
also compromise other peripherals’ firmware. In 2008, Tri-
ulzi demonstrated how to exploit a vulnerability in a Broad-
com Tigon network interface card (NIC), and inject malware
into the NIC to eavesdrop on all traffic [35]. Triulzi also
showed that the malware on the NIC can deploy malicious
code into the GPU, causing the GPU to store and analyze
the data sent through the NIC [36]. In 2009, Chen exploited
a vulnerability in the Apple keyboard firmware update tool,
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which enables attackers to inject malicious code into the
firmware of an Apple Aluminum Keyboard during firmware
update [5]. Such malicious code can be a key-logger or script
that can compromise the host operating system. In 2010,
a buffer overflow vulnerability in a Broadcom NIC firmware
was published [7], through which a remote attacker can com-
promise the NIC firmware by sending malicious packets to
this NIC, then execute arbitrary code on the NIC.

We expect that malware on peripherals’ firmware will be a
popular trend for next-generation malware. Unfortunately,
it is still an open challenge to detect malware on peripherals
or verify the integrity of peripherals’ firmware because (1)
the limited memory and computational resources on periph-
erals make it difficult to deploy complex security primitives
on peripherals themselves; and (2) hardware-based protec-
tion is impractical because it would add cost and complexity
to devices already under severe economic constraints.

Problem Definition. In today’s computer systems, all
peripheral devices with firmware, such as network adapters,
USB and disk controllers, and even the BIOS, are at risk
from computer malware. Verifying the integrity of these
components’ firmware, and guaranteeing the absence of mal-
ware, is the main problem we address in this paper.

At first glance, software-based attestation [30, 31] may
provide an approach for verifying the integrity of firmware.
Device vendors could embed an attestation function in their
firmware, which driver code executing on the main CPU
could query to verify firmware integrity. The advantages
of software-based attestation are that no costly hardware
changes are needed, and that the OS can validate firmware
integrity (e.g., as a standard part of device driver initial-
ization). Unfortunately, previously proposed approaches for
software-based attestation have several shortcomings that
preclude applicability in this context. The most serious
shortcoming is a proxy attack (Figure 1), in which a queried
device contacts a faster device (the proxy) to compute the
correct answer to the time-sensitive checksum computation,
which enables malware on the device to go undetected. Pe-
ripherals, such as a NIC, can communicate with a remote
proxy server to compute the expected answer. Also, faster
peripherals can work as a proxy server to compute cor-
rect answers for slower peripherals in the face of previous
software-based attestation mechanisms.

Thanks to several new approaches, we improve software-
based attestation for devices and bring these approaches into
the realm of practicality. In fact, we leverage intricacies of
the system buses to create a software-based attestation func-
tion that prevents proxy attacks and dramatically increases
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Figure 1: A Proxy Attack.

the time overhead that malicious code exhibits. More specif-
ically, we propose to verify the peripheral firmware integrity
on a modern computer system, and propose a software-only
primitive, Verifying Integrity of PERipherals (VIPER). In
the spirit of software-based attestation, VIPER is based on
a timed challenge-response protocol between the host CPU
and each peripheral. Our attestation protocols can detect
all known software-based attacks on peripherals.
This paper makes the following contributions:

1. We systematically analyze the features of malware on
computer peripherals.

2. We propose a software-only primitive, VIPER, to verify
the integrity of peripheral devices’ firmware.

3. We propose novel attestation protocols that prevent all
known software-only attacks. Specifically, our attesta-
tion protocols can prevent a proxy attack that would
have been successful against previous software-based at-
testation mechanisms.

4. We fully implement VIPER on a Netgear GA620 net-
work adapter in an off-the-shelf computer, and also im-
plement an Ethernet-based proxy attack. Our evalu-
ation shows that VIPER can efficiently verify the in-
tegrity of peripherals’ firmware.

The remainder of this paper is organized as follows: Sec-
tion 2 provides background knowledge on the system bus
and architecture of a modern computer system, and mal-
ware on peripherals. Section 3 describes our assumptions
and attacker model. The VIPER architecture and attesta-
tion protocols are detailed in Section 4. Section 5 describes
our implementation, and Section 6 gives evaluation results
with the best known attacks. Open problems and limita-
tions are treated in Section 7, related work in Section 8, and
conclusions in Section 9.

2. BACKGROUND
We provide the necessary background on the system buses

and architecture of a modern motherboard, and the features
of malware on peripherals.

Modern System Buses and Architecture. Figure 2
shows a diagram of a modern motherboard. Two logical
chipsets (north- and southbridge) connect the host CPU(s)
with memory, PCI-family buses, and numerous other buses
and peripherals. The northbridge (memory controller hub)
typically deals with communication among the CPU, main
memory, any PCI Express (PCIe) peripherals, and the south-
bridge (I/O controller hub). The southbridge primarily han-
dles communication among the northbridge, IDE, SATA,
USB, LPC, PCI or PCI-X buses / peripherals, and so on.
On a modern motherboard, the clock speed of the north-
bridge and southbridge can exceed 1 GHz. The capacity of
various versions of PCI buses are from 1066 Mbps (32-bit
at 33.3 MHz) to 4266 Mbps (64-bit at 66.6 MHz). The ca-
pacity of a PCI-X bus is 4266 Mbps (64-bit at 66.6 MHz) or
8512 Mbps (64-bit at 133 MHz) [21]. PCIe supports 2 Gbps

(v1), 4 Gbps (v2), and 8 Gbps (v3) on each lane, with up to
32 lanes in each PCIe slot [20].
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Figure 2: Hardware Architecture of a Modern
Motherboard.

Memory-mapped I/O (MMIO) [13] maps part of the mem-
ory inside peripherals (MMIO memory) to the main memory
address space of the host CPU, and enables the host CPU
to access the MMIO memory on peripherals through ordi-
nary memory read or write instructions. A separate I/O
address space also exists and can be used to interface with
some peripherals, in which case the host CPU accesses the
peripherals through special I/O instructions (e.g., outb).

Direct Memory Access (DMA) enables peripherals to trans-
fer data between main memory and the device’s local mem-
ory without involving the host CPU. The memory addresses
in the main memory that a peripheral can access through
DMA can be controlled in newer systems with hardware
support for virtualization by using an input/output mem-
ory management unit (IOMMU) [1, 2, 14].

Peer-to-Peer Peripheral Communication. Based on
the PCI and PCIe specifications [20, 21], two PCI / PCIe pe-
ripherals can engage in peer-to-peer communication. How-
ever, under typical workloads on a commodity PC, one end-
point is almost always the host CPU or main memory. Nev-
ertheless, on a modern motherboard, DMA potentially en-
ables a peripheral device to read or write other peripherals’
MMIO memory. For instance, the GPU often has a large
amount of memory (1 GB or more) mapped into the main
memory address space using MMIO. A NIC can write or
read the GPU’s MMIO memory using DMA [27, 36]. In to-
day’s systems, the IOMMU is in the northbridge, and it is
responsible for configuring the main memory addresses that
peripherals can access through DMA. Any DMA access to
main memory must go through the IOMMU. However, two
PCI peripherals can often avoid the IOMMU, especially if
both peripherals connect via the southbridge [27].

Malware on Peripherals. Once malware infects com-
puter peripherals, it has the following features:

1. Malware on a peripheral can eavesdrop on sensitive data
handled by the peripheral (e.g., passwords).

2. Malware on a peripheral may modify executable pro-
grams or scan sensitive data in main memory via DMA
if the IOMMU is not perfectly configured or not present
on a computer system.

3. Malware on one peripheral may spread malicious code
to other peripherals through DMA.

4. Malicious peripherals can collude using peer-to-peer bus
communication without involving the host CPU.

5. Malware on peripherals cannot be removed by firmware



update tools if the firmware update procedure assumes
that the existing firmware is benign.

3. ASSUMPTIONS & ATTACKER MODEL

Assumptions. Our focus is in protecting peripherals from
network-based threats. Attacks where an attacker physically
accesses the target device to change its hardware configu-
ration (e.g., over-clocking peripherals’ CPUs or increasing
their memory) are out of scope. We assume that the veri-
fication program on the host CPU is correct, and that the
operating system on the host CPU is secure and trustworthy
during verification. While this is a strong assumption [26],
recent work in OS-level security and trustworthy computing
may in fact provide a reasonable platform from which to
attempt peripheral device verification [3, 19, 37]. We also
require that the verifier program on the host CPU has been
configured with sufficient information about peripheral de-
vices installed in a computer system, i.e., the verifier knows
what is supposed to be there.

Attacker Model. The attacker may compromise firmware
executing inside peripheral devices. The attacker may also
control remote machines that may assist a compromised de-
vice in responding to challenges. This machine may have
considerable computation and memory resources, though
the attacker is still unable to break standard cryptographic
primitives [23]. However, we assume practical communica-
tion constraints, such as the bandwidth and latency charac-
teristics of PCI [20, 21] and Gigabit Ethernet.

4. VIPER: VERIFYING THE INTEGRITY

OF PERIPHERALS’ FIRMWARE
We describe the VIPER system architecture, attestation

protocols, and checksum function.

4.1 VIPER Overview
VIPER is a software-only solution to verify the integrity

of peripherals’ firmware using a timed challenge-response
protocol between the host CPU and peripherals.
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Figure 3: VIPER system architecture.

System Architecture. In VIPER (Figure 3), a verifier
program executes on the host CPU and performs the verifi-
cation procedure over all peripherals one-by-one on a com-
puter system. The verifier program has correct copies of
all peripheral firmware (e.g., bundled with device drivers) in
the computer. A checksum simulator in the verifier program
generates challenges (cryptographic nonces) and the corre-
sponding expected responses by simulating the verification

procedure over the correct copies of peripherals’ firmware.
A timer is used to measure the time of the verification pro-
cedure from inside the verifier program (“Verifier Code” in
Figure 3). On each peripheral device, a verification func-
tion comprised of three main parts engages in the VIPER
verification protocol to set up an untampered execution en-
vironment and compute a special checksum function over
the contents of the verification function’s components (the
checksum function itself, a communication function, and a
cryptographic hash function). The checksum function is
carefully designed to offer optimal performance. Any ma-
licious code or operations during verification either invali-
date the checksum result, or cause a detectable delay in the
verification function’s response. When the checksum com-
putation finishes, the checksum function invokes the hash
function over the entire memory contents of the peripheral.
By verifying the checksum result and the computation time,
the verifier program obtains the guarantee that an untam-
pered execution environment has been set up inside the pe-
ripheral device, and that the subsequent computation of the
complete hash of the peripheral’s firmware is trustworthy.

Full System Verification. In VIPER, the host CPU
verifies the firmware integrity of all peripherals one-by-one.
However, a faster peripheral on the motherboard can work as
a proxy helper for a slower peripheral. Consider a resource-
impoverished device such as a keyboard. Such devices are
likely equipped with 8-bit microcontrollers running at a few
tens of MHz. The computational latency imposed by run-
ning a checksum algorithm on such devices may actually be
large enough to cover up the communication latency induced
by forwarding nonces and responses to a faster malicious de-
vice elsewhere in the system or even on an external system.

The solution for verifying a device with a particular level
of computational capability is that all devices with greater
capabilities must be verified first. For example, to verify a
slow 8-bit microcontroller, all high-speed peripheral devices
(e.g., NIC, SATA controller, GPU, USB 3.0) must first be
verified. After the attestation of a faster peripheral, the ver-
ification function on the faster peripheral continues running
until all peripherals have been verified. In this way, VIPER
can prevent the faster peripheral from being compromised
during the time interval between initial verification of the
faster peripheral and completion of the verification of all
peripherals. Thus, the verifier program on the host CPU
can conclude that the devices capable of masquerading as
the weak device are all benign, and will not interfere with
the verification process.

Verification Procedure. We now detail the verification
procedure for a single peripheral.

1. The verifier program calls the checksum simulator to
generate nonces, and expected checksum and hash re-
sults by simulating the verification procedure.

2. The verifier program sends an attestation request to the
peripheral. The checksum function on the peripheral
resets the peripheral into a known-good state.

3. The verifier program starts a timer, and begins to per-
form the attestation by sending the nonces generated by
the checksum simulator to the target peripheral over the
system’s bus (Section 4.2).

4. The verification function executing inside the peripheral
sets up an untampered execution environment, performs
the checksum computation, and sends the result back to



the verifier program on the host CPU. The verification
function then calls the hash function to compute a hash
over the full memory contents of the target peripheral.

5. The verifier program confirms that the checksum results
are correct and timely.

6. The verification function on the peripheral sends the
hash result to the verifier program.

7. The verifier program validates the hash result.

4.2 Attestation Protocol
Though an on-board proxy attack can be prevented or de-

tected as described in Section 4.1, it is a challenge to detect a
remote proxy attack. A network-enabled peripheral device
can communicate with a remote proxy helper through its
network interface. Also, the network-enabled peripheral can
work as a communication medium in a hybrid proxy attack,
e.g., when a USB peripheral is being verified, a NIC may
help the USB peripheral to contact a remote proxy helper,
even if the NIC’s CPU is slower than the USB peripheral’s.
In this section, we propose novel attestation protocols that
detect such remote proxy attacks.

4.2.1 Latency-based Attestation Protocol

In a proxy attack, the peripheral to be verified always
incurs some latency to communicate with a proxy helper.
If the checksum computation time is well-controlled and
smaller than the minimal communication latency between
the peripheral and a proxy helper, the additional latency
caused by the proxy attack is detectable, even if the proxy
helper has infinitely fast computation resources. In this sec-
tion, we detail a latency-based attestation protocol based on
these observations. Also, we describe a technique to increase
the communication overhead between a peripheral and a
proxy helper, and a technique to accelerate the attestation
procedure by synchronizing the host CPU and peripheral.
Figure 4 shows the time line of one challenge-response pair
in a latency-based attestation protocol, including both the
normal computation, and the proxy attack.
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Figure 4: One challenge-response pair for latency-
based attestation under both normal computation
and a proxy attack.

Under normal conditions, the host CPU sends a challenge
to the peripheral requiring time T

cpu

send , and the checksum
computation consumes time T per

comp . After checksum com-
putation, communication consumes time T cpu

recv to send the
checksum back to the host CPU. Thus, the time of one
challenge-response pair is:

T
normal
comp = T

cpu

send + T
per
comp + T

cpu
recv (1)

In a proxy attack, the peripheral forwards the challenge

sent by the host CPU to a proxy helper, which consumes
time T

per

send . The remote helper consumes T helper
comp to compute

the correct checksum, and then takes T per
recv to send the result

back to the peripheral. Thus, in the proxy attack, the time
of each challenge-response pair is:

T
proxy
comp = T

cpu

send + T
per

send + T
helper
comp + T

per
recv + T

cpu
recv (2)

We assume that T helper
comp is zero because we conservatively

assume that the remote helper has massive computational
and memory resources available. Then, the overhead caused
by a proxy attack is:

T
proxy

overhead = T
per
send + T

per
recv − T

per
comp (3)

To detect a proxy attack, T proxy

overhead must be positive and de-
tectable. Therefore, T per

comp must be well-controlled to guar-
antee that T per

comp is smaller than the minimal detectable
proxy overhead. Note that modern network interfaces can
have extremely low latency for short connections (e.g., con-
sider a gigabit Ethernet crossover cable). Thus, the practical
bound for minimal proxy overhead is a function of the ap-
plication scenario. Internet-based attacks are unlikely to be
less than one millisecond away, but an “evil maid” attack
can easily manage sub-millisecond latencies.

If T per
comp must be small, it is unlikely that the entire mem-

ory region containing the verification function can be checked
during a single challenge-response pair. Thus, VIPER em-
ploys multiple challenge-response iterations to guarantee that
the entire verification function memory region is verified.
Between two consecutive challenge-response pairs, the com-
munication function waits for the next challenge. Note that
the communication function is also part of the verification
function (Figure 3) and is verified by the checksum func-
tion. However, during the time interval between two consec-
utive challenge-response pairs, an adversary can accurately
guess the expected behavior of the checksum function. To
remove this potential attack surface, we work to minimize
any idle waiting time by overlapping checksum computation
and challenge-response exchange.

Increasing Proxy Communication Overhead. The
checksum function maintains state as an array of bit vectors.
During one iteration of the checksum computation, several
checksum vectors may be updated. However, to make the
communication between the verifier program and the periph-
eral efficient, only one randomly-selected checksum vector is
returned to the host CPU during each challenge-response
pair. To increase the communication overhead between pe-
ripherals and the proxy helper, we design the protocol such
that the host CPU sends a new challenge to the peripheral
before the checksum vector is returned, and the checksum
vector to be returned is chosen based on this newly-received
challenge sent by the verifier program. This is illustrated in
Figure 5, where cksum[i ] denotes a single checksum vec-
tor randomly selected from the full checksum state as it
exists after an iteration computed with nonce[i ] as an in-
put. The random selection is chosen based on the value of
nonce[i + 1 ]. Tn

diff , the time interval between receiving the
new challenge and sending the correct checksum result, is
so small that a proxy helper is forced to return the entire
set of correct checksum vectors or at least all the check-
sum vectors that have been updated during the checksum
computation back to the peripheral before missing the time
deadline. (A proxy that randomly guesses which vector to



return will quickly be detected as additional checksum itera-
tions drive the probability of repeated successful guessing to
a negligible level.) This technique then increases the value
of T per

recv . The additional communication overhead of sending
the entire set of vectors makes it overwhelmingly likely that
the attacker will miss the deadline.

Continuous Checksum Computation. It is desirable to
eliminate any idle waiting on the peripheral between check-
sum iterations, both for efficiency and to reduce the time
during which an attacker knows that the checksum’s in-
ternal state remains constant. The previous paragraph de-
scribes how a portion of the checksum state as influenced by
nonce[i ] is not returned to the host CPU until nonce[i + 1 ] is
received. If the peripheral device supports concurrent com-
putation and data exchange (as is commonly the case with
memory-mapped IO), then the reception of new nonces can
be closely synchronized with the runtime of checksum iter-
ations, thereby enabling continuous checksum computation.
This is evident in Figure 5, when viewing a checksum itera-
tion as the elapsed time at the host CPU between transmis-
sion of nonce[i ] and reception of chsum[i ]. Excluding the
very first and last checksum iterations, T

cpu

send for iteration
i + 1 and T cpu

recv for iteration i do not impose any additional
latency on the total checksum computation time.
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Figure 5: The latency-based attestation procedure
after speed-up under benign and (hypothetically
successful) attack conditions.

The time for a single challenge-response pair is:

T
normal
comp = T

cpu

send + T
n
diff + T

per
comp + T

cpu
recv (4)

In this equation, Tn
diff is the time interval between receiving

the nth nonce and sending the (n − 1 )th checksum result on
the peripheral.
In a proxy attack, the malicious code on the peripheral

sends the challenge to a proxy helper as soon as it receives
the challenge. The time of a challenge-response pair in the
proxy attack is:

T
proxy
comp = T

cpu

send + T
per
send + T

helper
comp + T

per
recv + T

cpu
recv (5)

We still assume that T helper
comp is zero. Thus, the time over-

head caused by a proxy attack is:

T
proxy

overhead = T
per
send + T

per
recv − T

n
diff − T

per
comp (6)

Through this equation, we can see that Tn
diff decreases the

value of T proxy

overhead . Thus, it is desirable that the CPU and
peripheral are well-synchronized so that T

proxy

overhead remains
positive and detectable.

4.2.2 Other Potential Attestation Solutions

Other features of communication channels, such as com-
munication latency variance, packet loss, and throughput,
may also be viable tools to detect a proxy attack when veri-
fying the integrity of peripherals’ firmware. Compared with
Ethernet communication, the communication channel be-
tween the host CPU and the peripheral is very efficient and
stable, with low communication latency variance and near-
zero packet loss rate. In a communication latency variance-
based attestation protocol, if the communication variance on
the proxy communication channel is larger than the well con-
trolled checksum computation time, the proxy helper cannot
always send the expected checksum result back to the pe-
ripheral in time. A packet loss-based attestation protocol
is similar. Network devices suffer from different levels of
packet loss with Ethernet. However, on the motherboard,
the communication between the host CPU and peripher-
als over system buses has near-zero loss rate. Therefore,
a packet loss-based attestation protocol may also represent
a practical solution to verify the integrity of peripherals’
firmware in a computer system. A throughput-based attes-
tation protocol requires that the throughput between the
host CPU and the peripheral is larger than the through-
put between the peripheral and the proxy helper. The host
CPU can send a large amount of random data to the pe-
ripheral and require that the random data is incorporated
into the checksum computation. To attempt an attack, all
of the random data must be sent from the peripheral to the
proxy helper. The protocol can be constructed such that the
checksum computation on the NIC will complete before the
necessary challenge and response can be exchanged with the
proxy. We leave the detailed investigation of these mecha-
nisms as future work.

4.3 Design of the Checksum Function
In this section, we describe the design of our checksum

function in detail. Similar to other software-based attesta-
tion schemes [18, 30, 31], our checksum function sets up an
untampered execution environment, computes a fingerprint
over the contents of the verification function (i.e., the check-
sum function itself, and communication and hash functions).
Through the checksum result and elapsed computation time,
the checksum function provides a guarantee to the verifier
program that the verification function has not been mod-
ified and the following hash computation was carried out
in the untampered execution environment, and is therefore
trustworthy. As discussed in the above sections, the check-
sum function needs to be carefully designed to achieve the
necessary timing properties.

There are many different system architectures and instruc-
tion sets on peripheral devices. It is difficult to design a
single generic checksum function for all cases. However, we
first discuss the general principles that apply to the design
of the checksum function for any peripheral:

1. All available registers are used during checksum com-
putation. For any additional operations (malicious op-
erations), an attacker has to utilize memory operations
(read and write) to save the register values first. This
causes large computational overhead since memory op-
erations are much slower than register operations.

2. Each iteration of the checksum function should fit into
the Instruction Cache if there is an Instruction Cache,
and cause as few cache misses as possible. Any ad-



ditional operations inserted by malicious code should
cause more cache misses.

3. To prevent an attacker from predicting the memory ad-
dresses to read, the checksum function reads from mem-
ory addresses in a pseudo-random pattern.

4. To prevent an attacker from computing the expected
checksum result over a correct copy of the verification
function located in some other memory address, the data
pointer (DP) value used to address memory should be
included in the checksum computation, i.e., the check-
sum computation is position-dependent.

5. To further prevent malicious code from performing the
computation at other memory addresses, the program
counter (PC) value is also included in the checksum com-
putation if the PC value can be efficiently read by the
checksum function.

6. The checksum function is simple enough that it is feasi-
ble to determine that the implementation is optimal but
non-parallelizable.

We design our checksum function using a sequence of
strongly-ordered ADD and XOR operations, since they are
naturally non-parallelizable. Strongly-ordered means that
the sequence of checksum operations cannot be changed
without causing the checksum result to be different with
high probability. Each checksum state update incorporates
the value of the program counter (PC), data pointer (DP),
contents of the memory referenced by the DP, the most re-
cent nonce sent by the verifier, and the existing checksum
states. The carry bit should be included during addition op-
erations if a carry bit is supported on the target peripheral,
to avoid losing entropy due to repeated invocation of the
checksum. We use intermediate checksum results to select
the memory addresses to read in a pseudo-random fashion.
This helps to optimize the implementation of the checksum
function, since we do not need additional instructions to gen-
erate pseudo-random numbers. Malware, in an attempt to
remain undetected, must forge the correct PC or DP values
during checksum computation. However, forging the PC or
DP value will require additional register and memory opera-
tions, and cause cache misses and extra memory operations,
which will result in detectable computational overhead. We
describe our specific implementation of the checksum func-
tion on a Netgear GA620 NIC [12] in Section 5.3.

5. IMPLEMENTATION
We implement and evaluate VIPER on an x86-class com-

puter system. Because of the limited availability of source
code for peripherals’ firmware, we focus on a PCI-X Net-
gear GA620 Gigabit Ethernet Adapter (NIC) that uses open
source firmware [11]. We installed this card in a Sun Fire
V20z 1U rack-mount server that includes a single-core AMD
Opteron processor running at 1.795 GHz, 2 GB of RAM,
and two PCI-X expansion slots. In this section, we describe
the hardware architecture of the Netgear GA620 NIC, and
present the detailed implementation of our latency-based at-
testation scheme.

5.1 Netgear GA620 Network Adapter
The Netgear GA620 is a Gigabit Ethernet adapter with a

64-bit PCI-X interface. The theoretical maximum through-
put between the host CPU and the GA620 NIC is 8.5 Gbps
on a 133.3 MHz, 64-bit PCI-X bus. The maximal band-

width of the Ethernet link of the Netgear GA620 is 1 Gbps.
Figure 6 illustrates the architecture of a Netgear GA620.
The GA620 features two MIPS microcontrollers “A”and“B”
running at 200 MHz. The two microcontrollers work simul-
taneously, and the firmware assigns work to both micro-
controllers. In firmware version 12.4.3 [11], Microcontroller
A works as the main controller in charge of packet trans-
mission, and microcontroller B assists by preparing DMA
descriptors. On each microcontroller, there is a 64-byte
Instruction Cache (which fits 16 instructions), and an 8-
byte Data Cache. On microcontroller A there are 16 KB
of scratch pad memory, though microcontroller B has only
8 KB of scratch pad memory. The scratch pad memory of
each microcontroller is located in the same memory address
range, and one microcontroller physically cannot address the
other’s scratch pad memory. The host CPU and DMA trans-
actions are also unable to address either scratch pad memory
region. During NIC initialization, the firmware moves some
time-critical functions into the scratch pad memory. A 4 MB
SRAM is shared by both microcontrollers.

Instruction Set Architecture. The microcontrollers im-
plement a 32-bit MIPS instruction set architecture. There
are 32 registers, where r0 is always zero, and r1 – r31 are
used for common operations. All arithmetic operations, log-
ical operations, memory operations, and jump operations
are supported while the rotation-shift, multiply, and divide
operations, which are available in general MIPS microcon-
trollers, are removed. In arithmetic operations the carry bit
value is not included, which makes the design of an attes-
tation function significantly more challenging because the
lack of the carry bit results in entropy loss. The lack of a
multiplier or rotation shift also complicates implementation
of a size-optimized cryptographic hash function. However,
firmware can read the program counter value indirectly us-
ing jump instructions (e.g., JAL or JALR).

Memory Layout. Figure 7 illustrates the memory layout
of the external SRAM on a Netgear GA620 NIC. The first
16 KB of the external SRAM is mapped into the memory ad-
dresses of the host CPU via a memory-mapped IO (MMIO)
interface. Both the host CPU and NIC firmware can read
or write this MMIO memory. Following the shared MMIO
memory, the NIC firmware is in the space from 0x04000
to 0x16000. After the firmware space follows the space for
each microcontroller’s stack, RX/TX DMA descriptors and
RX/TX buffers. On microcontroller A, the 16 KB inter-
nal scratch pad memory is addressable from 0x00c00000 to
0x00c04000. On microcontroller B, the 8 KB internal scratch
pad memory occupies 0x00c00000 to 0x00c02000.

NIC – Host CPU Communication. The Netgear GA620
NIC and host CPU communicate via a Mailbox abstraction,
which is a bank of 32 8-byte communication registers that
are mapped into the host CPU’s MMIO address space. Mi-
crocontroller A uses the lower 16 mailbox registers and mi-
crocontroller B uses the higher 16 mailbox registers. The
host CPU can read or write to the mailbox registers directly
using ordinary memory operations (e.g., mov). When the
host CPU writes a mailbox register, an event is generated
on the GA620 NIC and the NIC firmware can detect the
event by checking the event register. However, the GA620
NIC cannot cause interrupts to the host CPU by writing val-
ues into the mailbox registers, because the interrupt mecha-
nism on the host CPU is too slow to support Gigabit-speed
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communication. For large amounts of data, such as network
packets, the NIC transmits the data between local memory
(TX/RX buffer) and main memory through DMA.

5.2 Verification for Microcontrollers A and B
We conduct the attestation protocol on both microcon-

trollers A and B to verify the entire memory contents of the
Netgear GA620 NIC. To prevent the verification functions
running on one microcontroller from being modified by mali-
cious code running on the other microcontroller, we execute
the verification functions within the scratch-pad memory of
each microcontroller. On each microcontroller, we imple-
ment: a checksum function VCF (Viper Checksum Func-
tion) (Section 4.3) that computes a checksum over the en-
tire verification function memory contents; a communication
function that initializes the checksum states, reads nonces
from the host CPU, and randomly returns a 32-bit checksum
state vector to the host CPU for each nonce-checksum pair.
VCF and the communication function are implemented us-
ing 656 MIPS instructions, and are deployed into the scratch
pad memory of each microcontroller. A SHA-1 hash function
is deployed into the scratch pad memory of Microcontroller
A and its binary code consumes 2 KB. In detail, the attes-
tation procedure performs the following operations:

1. The verifier program on the host CPU sends an attes-
tation request to both microcontrollers A and B on the
NIC. The checksum functions on both microcontrollers
A and B set the NIC to a known state.

2. The verifier program conducts the latency-based attes-
tation protocol for microcontroller B first.

3. During the attestation, VCF , which is in microcontroller
B’s scratch-pad memory, sets up an untampered exe-
cution environment and computes a checksum over the
entire 8 KB scratch pad memory on Microcontroller B.
Because microcontroller A cannot access microcontroller
B’s scratch pad memory, any malicious code on micro-
controller A cannot tamper with the execution environ-
ment on microcontroller B.

4. Because VCF verifies the entire scratch pad memory on
Microcontroller B, it is not necessary to call the SHA-1
hash function to compute a hash over the scratch pad
memory on Microcontroller B. After the attestation pro-
cedure for microcontroller B, the communication func-
tion on microcontroller B continues to run but waits
for an EXIT command from the host CPU. The host
CPU will not send an EXIT until the attestation for
both microcontrollers B and A are complete. Note that

while it waits, the program counter of microcontroller
B remains within the scratch-pad memory that has just
been verified, so its behavior is known.

5. The verifier program on the host CPU verifies the check-
sum results and computation time during the attestation
for microcontroller B. If the attestation for microcon-
troller B is successful, the verifier program conducts the
attestation for microcontroller A, also using the latency-
based attestation protocol.

6. During the attestation for microcontroller A, VCF on
microcontroller A first sets up an untampered execution
environment, and computes checksums over VCF itself,
the communication function, and the SHA-1 hash func-
tion.

7. The VCF calls the SHA-1 hash function to compute
a cryptographic hash over the memory contents of the
entire scratch-pad memory on microcontroller A, and
of the external SRAM. It then sends the hash result
to the host CPU. Because the verification function on
microcontroller B is running during the attestation of
microcontroller A, the attestation procedure of micro-
controller A cannot be tampered with by B.

8. The verifier program on the host CPU confirms the at-
testation results (checksum results, timing results, and
hash result) of the attestation for microcontroller A.

9. The verifier program informs both microcontrollers A
and B to exit their attestation functions.

5.3 Checksum Function Implementation
We implement the checksum function VCF as 32 check-

sum computation blocks. Each block has 16 MIPS CPU
instructions and fits precisely into the 64-byte instruction
cache, since all instructions are 32 bits long. As each block
executes, one 32-bit checksum vector, out of a total of 26
checksum state vectors, are updated using alternating ADD

and XOR operations. Each block takes as input: a subset
of the contents of scratch pad memory in the NIC, other
checksum states, nonces from the verifier program on the
host CPU, the memory addresses being read (data pointer),
and the program counter. Figure 9 shows the pseudo-code
to update one checksum state in each block. All 31 available
general purpose registers (r1 to r31) are used by the check-
sum computation: 26 registers (r5 to r30) are used to save
checksum states; r1 and r31 are used as temporary vari-
ables to save memory addresses and the values of recently
read memory; r2 stores the nonce provided by the host CPU;
r3 stores the end address of each checksum block; r4 stores



the starting address of each checksum block (both r3 and r4
essentially reflect program counter values).

/* Pseudo Code to update one checksum state:

C is the checksum vector,

i is the index of a checksum vector register,

tmp is a temporary variable,

addr is the memory address to read,

memory_base can be the beginning address of

a checksum block or the end address of

a checksum block. */

/* in odd blocks */

tmp = mem[addr] xor C[(i-2) mod 26] + addr

/* construct another memory address */

addr = memory_base xor ( tmp & mask )

/* update one checksum state */

C[i] = mem[addr] xor C[i] + PC xor nonce + tmp

/* create dependency on C[i] for next iteration */

nonce = nonce + C[i]

/* in even blocks */

tmp = mem[addr] + C[(i-2) mod 26] + addr

/* construct another memory address */

addr = memory_base xor ( tmp & mask )

/* update one checksum state */

C[i] = mem[addr] + C[i] xor PC + nonce xor tmp

/* create dependency on C[i] for next iteration */

nonce = nonce xor C[i]

Figure 9: Pseudo-code to update one checksum state
vector.

Assembly Instruction Explanation
xor r31, r4, r1 addr = memory base ⊕ offset

lw r1, 0(r31) memory read

xor r1, r5, r1 tmp1 = r5⊕mem[addr ]
add r31, r31, r1 tmp2 = addr + tmp1

andi r1, r31, 0x1ffc offset = tmp2 & mask

xor r1, r3, r1 addr = memory base ⊕ offset

lw r1, 0(r1) memory read

xor r1, r7, r1 tmp3 = r7⊕mem[addr ]
add r1, r3, r1 tmp3 = PC + tmp3

xor r1, r2, r1 tmp3 = nonce ⊕ tmp3

add r7, r31, r1 r7 = tmp2 + tmp3

add r2, r7, r2 nonce = r7 + nonce

andi r1, r7, 0x7c0 tmp4 = r7 & mask1

xor r4, r4, r1 r4 = r4⊕ tmp4

jalr r3, r4 r3 = PC + 8 ; jump to r4
andi r1, r2, 0x1ffc offset = nonce & mask

Figure 10: Assembly instructions for one checksum
block.

Figure 10 shows the assembly code of one checksum com-
putation block. In this checksum block, one checksum state
(r7) is updated based on the contents of two memory ad-
dresses, the values in r3, and another checksum state (r5).
At the end of this checksum block, the value of r3 is up-
dated by the instruction JALR, which reads the program
counter (PC) value into r3 as part of a jump to the memory
address saved in r4. Note that MIPS executes the instruc-
tion following a jump instruction even if the jump is taken;

it executes prior to the instruction residing at the jump tar-
get. The value of r4 is updated using five bits (bits 6 to
bits 10) of r7. Because the target address (r4) of the JALR

instruction is updated randomly, the PC jumps to the be-
ginning address of one of the 32 checksum blocks at the end
of each checksum block in a pseudo-random fashion. In this
way, we can prevent an attacker from predicting the target
address of the jump instruction. Out of the 32 checksum
blocks, 4 checksum blocks are chosen as ‘exit’ blocks, which
deterministically jump to the communication code following
checksum computation. The communication code returns
one 32-bit checksum state vector to the host CPU and reads
the nonce most recently sent from the host CPU (i.e., the
verifier program).

One checksum state is read in each block, and one state is
updated (written) in each block. Cumulatively across all 32
checksum blocks, all 26 checksum states are updated. Since
an attacker cannot predict which block will be used for com-
putation until the current block has completed, the attacker
cannot use any of the registers that store checksum states for
malicious operations, unless the attacker first uses memory
operations to save the values stored in those registers.

5.4 Latency-Based Attestation
As described in Section 4.2.1, to prevent a proxy attack,

the checksum computation time must be well controlled, and
small enough that the overhead of a proxy attack (T proxy

overhead

from Eqn. 3) is detectable. In this section, we calculate the
theoretical minimal time of a proxy attack over a 1 Gbps
Ethernet link. Then, we describe the mailbox communica-
tion overhead between the host CPU and the GA620 NIC,
the checksum computation time for one challenge-response
pair, and an optimization to speed up the attestation pro-
cedure via synchronization.

5.4.1 Theoretical Fastest Time for a Proxy Attack

In an Ethernet-based proxy attack, to explore the best
case for the attacker, we assume that both the peripheral and
the proxy helper need no time to prepare the network pack-
ets. However, the packets used in a proxy attack must go
through the hardware Ethernet MAC (physical serial com-
munications port) of the NIC. Therefore, theoretically the
fastest time of an Ethernet-based proxy attack is the time
that it takes the packets to go through the Ethernet MAC
of both the sender’s and receiver’s NICs, and the time that
the data actually spends on the wire. We assume that the
peripheral and the proxy helper utilize 72 byte raw Ethernet
frames to exchange data during a proxy attack, as 72 bytes
is the minimal allowable Ethernet frame size [10]. Assuming
that both the peripheral and the proxy helper use 1 Gbps
Ethernet MAC, the time consumed by packet transmission
is 1152 nanoseconds for a round trip.1 This is useful to set a
lower bound for the shortest possible proxy attack (i.e., the
fastest attack that could ever be performed with this hard-
ware configuration), and sets T

per
send + T per

recv = 1152 ns from
Eqns. 3 and 6. Under these conditions, to detect a proxy
attack, T per

comp (Eqn. 3) and (if using the synchronized ver-
sion) Tn

diff (Eqn. 6) must be sufficiently small that T proxy

overhead

remains positive and detectable.

12 · 72 bytes·8 bits/byte
1,000,000,000 bits/second

= 1152 ns. 72 bytes is the minimal

usable Ethernet frame size with payload [10].



5.4.2 Communication Overhead

During attestation, the host CPU measures the time for
each challenge-response pair between the host CPU and the
peripheral device. To detect the time overhead caused by
malicious operations, the communication between the host
CPU and peripheral should be efficient and stable. Figure 8
shows the mailbox communication architecture between the
host CPU and the microcontrollers on the GA620 NIC.

Determining Communication Delay. We now describe
our approach to empirically determine the CPU-NIC com-
munication overheads (T cpu

send and T cpu
recv from Section 4.2.1).

Essentially, we exchange the smallest possible amount of
data between the CPU and the NIC, with the NIC perform-
ing the absolute minimum amount of computation to return
a result. This is as close as we can practically come to setting
T per
comp = 0. First, the host CPU writes a 32-bit value into

address A (a mailbox register address), which generates an
event on the GA620 NIC. As soon as it detects the mailbox
event, the firmware on the GA620 NIC updates the 32-bit
value in address B. After a time delay, the host CPU repeat-
edly reads address B until it obtains the updated value from
address B.
Since memory operations can take hundreds of CPU cy-

cles, the communication between the host CPU and NIC is
the most efficient when the host CPU can predict the pre-
cise time to read the updated value, and obtain the updated
value from address B in a single read operation. Therefore,
we design an experiment to predict the time delay between
a mailbox write and mailbox read on the host CPU, so that
the host CPU can communicate efficiently and reliably. In
our experiment, the host CPU stalls for a fixed delay in-
terval between the MMIO write and MMIO read. For each
delay period, we repeat the MMIO write and MMIO read
200 times, and record the frequency that the host CPU ob-
tains the updated value from address B in a single MMIO
read. We then increase the delay, and repeat the same ex-
periment until the delay is large enough that the host CPU
can always read the updated value in a single MMIO read.
We implement the measurement code on both the host

CPU and the GA620 NIC in assembly for efficiency. On
the host CPU, we disable all interrupts on the CPU core
where the measurement code is executing. We choose the
instruction RDTSC to read the current CPU counter as
a timer, taking care to incorporate a serializing instruction
(i.e., CPUID) to prevent instruction reordering from im-
pacting the accuracy of our measurements. We implement
the delay by spinning in a tight loop that consumes exactly
two clock cycles per loop iteration.
Figure 11 shows our experimental results. In this figure,

the X-axis is the delay in nanoseconds, N . The Y-axis is the
probability that the host CPU reads the updated value from
address B in a single MMIO read when the host CPU stalls
for N nanoseconds between writing the mailbox at address
A and reading the value from address B. The experimental
results show that when the delay is larger than 790 ns, the
probability is 1.

Demonstrating Communication Reliability. We then
fix the delay at 790 ns (determined from the previous re-
sults), and repeat the measurement another 200 times to
confirm that communication is reliable. In this experiment,
the host CPU measures the time between writing the mail-
box event and obtaining the updated value from address B

after a delay of 790 ns. Figure 12 shows our measurement
results. The X-axis is individual trials and the Y-axis is the
timing result in nanoseconds computed from CPU cycles.
The average result of the 200 trials is T

cpu

send + T cpu
recv = 1375

ns. The standard deviation is 4 nanoseconds.

5.4.3 Checksum Computation Time

We conduct two experiments to measure the time for check-
sum computation on the GA620 NIC. These experiments
are similar to the experiments used to measure the commu-
nication overhead between the host CPU and NIC in Sec-
tion 5.4.2. The only difference is that in the communica-
tion overhead measurement, the NIC writes a 4-byte value
to MMIO memory immediately upon receiving a mailbox
event, while in these experiments the NIC executes three
checksum blocks before writing to MMIO memory. Be-
cause we have implemented a checksum simulator, the check-
sum simulator always selects nonces where the NIC returns
a checksum state after executing precisely three checksum
blocks.

As with the communication overhead measurement, we
first perform experiments to predict the necessary delay on
the host CPU to guarantee that the host CPU can obtain
the expected checksum result in a single MMIO read oper-
ation. Figure 11 shows the probability that the host CPU
gets the expected checksum result using a single MMIO read
operation while varying the delay. For each delay period, the
experiments are repeated 200 times. The experimental re-
sults show that after the delay reaches 1616 ns, the host
CPU starts to read the expected checksum result for all 200
experiments, i.e., it becomes sufficiently reliable.

We conduct a second experiment to measure the entire
time between the host CPU writing the mailbox event to
MMIO memory, and reading the checksum result after a de-
lay of 1616 ns (one challenge-response pair). In each trial,
the checksum function on the NIC computes three checksum
blocks. Figure 12 shows the time of 200 challenge-response
pairs measured by the host CPU. The average value of a sin-
gle challenge-response pair (T normal

comp ) is 2202 nanoseconds,
with a standard deviation 4 nanoseconds. Based on these
results, we can calculate that the time required for com-
puting three checksums blocks (T per

comp) on the NIC is about

827 nanoseconds, (i.e., T per
comp = T normal

comp − (T cpu

send + T cpu
recv ) =

2202 ns − 1375 ns = 827 ns). Thus, the overhead caused by
the theoretical fastest proxy attack over 1 Gbps Ethernet is
about 325 nanoseconds (T proxy

overhead = (T per
send +T per

recv )−T per
comp =

1152 ns − 827 ns = 325 ns).

5.4.4 Host CPU – NIC Synchronization

A design goal of VIPER is to maximize the utilization of
the system buses and the CPUs in the NIC, and to minimize
the overall attestation runtime. Recall (Section 4.2.1) that
we can parallelize bus communication and NIC computation;
the host CPU sends the next nonce before the NIC writes
the current checksum result into MMIO memory. These
tight timing constraints require that the host CPU and NIC
be synchronized, to guarantee (1) that the host CPU is able
to send the nonce to the NIC before the NIC starts to re-
turn current checksum states, and (2) that the host CPU
reads the checksum result from MMIO memory only after
the NIC has updated the result. We describe the design and
implementation of our synchronization mechanisms and the
experiments that demonstrate their effectiveness.



Figure 11: Impact of delay
on probability that host CPU
reads expected value from ad-
dress B in a single MMIO read.

Figure 12: Communication
overhead and checksum com-
putation time (time of a
challenge-response pair) mea-
sured by the host CPU.
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Figure 13: Verification procedure with syn-
chronization between host CPU and NIC.

To remain synchronized, the time interval between two
consecutive MMIO reads by the host CPU should match the
time required to compute checksum blocks on the NIC CPU.
Therefore, given the initiation time of a read of cksum[i],
the time when the host CPU should start to read the value
of cksum[i + 1] can be predicted. In our implementation,
the verifier code again uses RDTSC to read the CPU time
stamp counter before starting to read cksum[i], and then
predicts the future time stamp counter value when the host
CPU should start to read the following checksum state. The
host CPU busy-waits in a tight loop that consumes exactly
2 CPU cycles per iteration until the necessary time arrives,
although we convert iterations to nanoseconds to streamline
presentation here. Figure 13 shows the verification proce-
dure with synchronization between the host CPU and NIC.
nonce1 is the first nonce that the host CPU sends to the
NIC, while cksum1 is the first checksum result that the NIC
returns to the host CPU.
To implement synchronization between the host CPU and

NIC, the checksum computation time must be long enough
that the host can perform one MMIO read operation (read
a checksum result) and one MMIO write operation (write a
nonce to the NIC) inside the time interval where two con-
secutive checksum results are returned by the NIC. When
the NIC computes three checksum blocks for each nonce-
checksum pair, the checksum computation time is not long
enough to keep synchronization between the host CPU and
NIC. Therefore, we increase the number of checksum blocks
to compute on the NIC for each nonce-checksum pair. Our
synchronization experiments show that the host CPU and
NIC can remain synchronized for over 300 nonce-checksum
response pairs when the NIC computes six checksum blocks
for each nonce-response pair.2 Figure 14 illustrates the first
few iterations of this procedure, yielding delay1 = 780 ns,
delay2 = 670 ns, and delay3 = 390 ns. Although 300
nonce-response iterations are not sufficient to verify the en-
tire memory contents of the verification function (this is a
simple application of the coupon collector’s problem), the
same procedure can be repeated multiple times to verify the
entire memory with overwhelming probability.
The average time for a single challenge-response pair is

2Note that the time for computing six checksum blocks on
the NIC is longer than the time of the theoretical fastest
proxy attack described in Section 5.4.1. However, it is much
shorter than the time of the real proxy attack we have im-
plemented. We discuss this discrepancy further in Section 7.

3106 ns (T normal
comp from Eqn. 4), with a standard deviation of

19 ns. The entire time for performing 300 challenge-response
pairs is 535 microseconds. The entire verification procedure
(excluding the time for SHA-1 to process the firmware in
SRAM on the NIC) consumes about 2 milliseconds.

6. EVALUATION
We implement a real Ethernet-based proxy attack, the

forging DP attack, and the forging PC attack on the Net-
gear GA620 NIC to evaluate VIPER’s ability to detect the
attacks.

Ethernet-based proxy attack. We implement a real
Ethernet-based proxy attack (Figure 15). Computers A and
B connect directly (without a switch) through a crossover
cable. The NICs in both computers are 1 Gbps Netgear
GA620s. On computer A, the host CPU verifies the firmware
integrity of the GA620 NIC using the latency-based attes-
tation protocol. Once the NIC on computer A receives a
challenge from the host CPU, it sends the challenge to com-
puter B (the proxy) over the crossover cable. It then waits
for the reply from computer B. In the real implementation,
we assume that the proxy is very fast, and needs no time to
compute the excepted checksum result. Therefore, on com-
puter B, as soon the NIC receives the packet that contains
the challenge for attestation, it sends the response, which in-
cludes the expected checksum, to computer A. The NIC on
computer B (the proxy) generates the response immediately
within its firmware, without bus activity and without involv-
ing the host CPU. Then, on computer A, the NIC receives
the checksum from computer B, and returns the checksum
to the host CPU.

Note that there is no timer on the NIC. Thus, the host
CPU measures the time of the proxy attack indirectly, since
it measures the time of the proxy procedure plus the com-
munication overhead between the host CPU and the NIC.
The average latency of a single challenge-response pair mea-
sured by the host CPU over 200 trials during the proxy
procedure is 43.72 ± 0.38 microseconds. The proxy attack
we implement consumes much more time than the checksum
computation time for each challenge-response pair in our im-
plementation on the GA620 NIC. Our implementation shows
that computer B cannot send the expected checksum back
to the NIC on computer A on time because the latency to
communicate with the proxy is longer than the expected
checksum computation time. Note that our simple C code



Figure 14: Impact of delay1,
delay2, and delay3 in Figure 13.
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Figure 15: Proxy attack imple-
mentation. Figure 16: Attacker performance.

implementation in the NIC firmware is slower than the the-
oretical fastest gigabit Ethernet proxy attack, although this
limitation is only a weakness for an attacker with a direct
physical connection (no intermediate network hops) to the
target system’s Ethernet port. Further optimization of our
attack is interesting future work.

Forging Data Pointer (DP) attack. In a forging DP
attack, the attacker maintains a shadow copy of the correct
verification function in unused memory, and then executes
malicious code out of the original address range of the check-
sum function, computing the expected checksum over the
shadow copy. In this attack, the malicious code needs to
add or subtract a constant offset to the DP value to redirect
the memory addresses to read (one instruction). Because the
DP value is also included in the checksum computation, the
malicious code also needs to forge its value before the compu-
tation (another instruction). To keep the PC value correct,
the malicious code cannot inject additional instructions in
the checksum computation block. Thus, the malicious code
has to jump out of the main checksum computation block
(one jump instruction) to change the DP value to compute
the expected checksum. After the computation, malicious
code has to jump back (another jump instruction) to the
main checksum computation block to obtain the expected
PC value. In our current checksum design, two memory ad-
dresses (DP) are checked in each checksum block and the DP
value is included in the checksum computation once in each
checksum block, so a forging DP attack needs five additional
instructions (two jump instructions and three arithmetic or
logical instructions) to compute the expected checksum re-
sult in each checksum block. The two jump instructions also
cause two cache misses in each checksum block.

Forging PC attack. In a forging PC attack, malicious
code is deployed in some other memory address and com-
putes the expected checksum over the original copy of the
verification function. In this attack, the malicious code does
not need to forge the DP value since the checksum is com-
puted over the original copy of the verification function.
However, the malicious code does need to forge the correct
PC. In VCF , r4 stores the beginning address of the current
checksum computation block while r3 stores the end address
of the previous checksum computation block. r4 and r3 are
updated at the end of each checksum computation block. In
the forging PC attack, the memory address of the malicious
checksum computation block has a constant offset from the
address of the original checksum computation block. To
jump to the malicious code block, the malicious code adds

a constant offset to r4 (one instruction) before the jump
instruction in each checksum block. To forge the correct
PC values (both r3 and r4) before the checksum computa-
tion, the malicious code also needs to subtract a constant
value from r3 and r4 (two instructions). As with the forg-
ing DP attack, to guarantee that the value of r3 and r4
have a constant offset from the correct value, the malicious
code has to jump out of the malicious checksum block (one
jump instruction) to modify the PC value, and then jump
back (another jump instruction) before the jump instruction
at end of each checksum block. Therefore, the forging PC
attack needs five additional instructions (two jump instruc-
tions, three arithmetic or logical instructions) and causes
two additional cache misses for each checksum computation
block to compute the expected checksum result.

Evaluation Results. Figure 16 shows the verification time
(checksum computation time plus communication overhead)
of normal computation (the host CPU and NIC are not
synchronized; three checksum blocks are computed for each
nonce-checksum pair), a forging PC attack, a forging DP at-
tack, the theoretical best proxy attack, and a time threshold
to detect attacks. The theoretical proxy attack line repre-
sents the communication overhead between the host CPU
and the NIC plus the time of the theoretically fastest proxy
attack (1152 nanoseconds for a round-trip) between the NIC
and a proxy helper over 1 Gbps Ethernet. Our results show
that a forging PC attack or a forging DP attack cause over
280 nanoseconds of computation overhead, while the theo-
retical fastest proxy attack causes over 325 nanoseconds of
overhead compared with the normal computation. These
overheads are readily detected by the host CPU executing
in a tight loop with interrupts disabled. Thus, VIPER suc-
cessfully detects all of the attacks.

7. DISCUSSION
We now discuss open problems, limitations, and known

issues with VIPER.
It remains an open problem to prove that a program of

any appreciable complexity is time-optimal. This has been a
significant hurdle for all software-based attestation proposals
to date. Two requirements have proven especially challeng-
ing: (1) The Checksum algorithm design does not have any
flaws that allow an attacker to obtain the expected result
with less than the expected data available. (2) The code
design of the checksum algorithm must require precisely the
smallest number of cycles to complete.

A primary goal of the present work has been to suggest



that additional sources of asymmetry may be viable prim-
itives for software-based attestation, and that these other
sources of asymmetry are easier to quantify. We used the
asymmetry of the latencies from CPU-to-peripheral, as com-
pared to the latencies from peripheral-to-proxy.
Interestingly, we also face the challenge of being unsure as

to whether our attack implementations are optimal. For ex-
ample, the theoretically fastest RTT for an Ethernet frame is
significantly shorter than the RTT that we observed with our
implementation of a proxy attack. We believe our VIPER
prototype to be secure against proxy attacks facing the em-
pirically measured proxy attack time, but an attacker who
can communicate at gigabit Ethernet’s theoretical speeds
may have an advantage. In practice, this limitation is mi-
nor, since we primarily consider attacks arriving via multiple
network hops on the Internet, which even today entails sev-
eral orders of magnitude higher latency.

Full System Verification. An overview of full-system
verification with VIPER is presented in Section 4.1. While
theoretically straightforward, learning the expected config-
uration of all programmable elements of a computer system
is a considerable practical challenge. Today’s vendor ecosys-
tem does not propagate such information, and we were un-
able to obtain enough information about a complete system
to attempt such verification. We suggest such endeavors as
fertile ground for future research.

Quiescing the System to Enable Verification. We ran
our experiments (Section 6) on hardware that is several gen-
erations removed from the latest systems. Our motivation
for doing so was in reducing the amount of system activ-
ity for which we could not account. Multicore processors,
system management interrupts (SMIs), and platform man-
agement tools such as OPMA, IPMI, or Intel AMT are all
capable of generating system activity that may be difficult
or impossible to quantify from a vantage point on a single
platform CPU. We view this as one instance of the chal-
lenges faced in attempting to identify expected or baseline
system behavior with high-assurance.
It is also worth mentioning that modern platforms include

significant support for power management. While the logic
that governs these operations is itself in scope for verifica-
tion, one way to achieve necessary levels of system quies-
cence may be to power down peripherals that cause (possi-
bly benign) interference. Failure to respond to power-down
requests is itself an indictment of a particular peripheral.

Hardware Variability. Nightingale et al. study 1,000,000
consumer PCs and find that a full 1% run outside 0.5% of
their rated clock speed, even when intentional overclocking
is taken into consideration [22]. This level of variability may
complicate the process of establishing baseline, or expected,
behavior for VIPER on a particular platform. Additional
investigation is warranted.

The Keyboard Conundrum. Passwords and bank ac-
count information frequently enter systems via the keyboard.
Unfortunately, it is among the most resource-impoverished,
and thus the most susceptible to being impersonated by
other devices. It may be more practical to empower key-
boards with some level of cryptographic awareness, than to
truly verify every last legacy peripheral that gets dragged
along in today’s SuperIO chips.
Why Not Hide? Attackers may be incentivized to infect
peripherals with malware that deletes itself when interro-

gated for verification. In principle the system must have
had a vulnerability somewhere, and the attacker may be
able to reinfect the system post-verification. However, it is
not easy to correlate infected firmware in one device with
a vulnerability in that device’s expected firmware, e.g., the
vulnerability may have been in the OS and the driver that
updates device firmware may have been compromised.

Network Infrastructure as the Verifier. In an enter-
prise network it may be reasonable to let network infrastruc-
ture such as gateway systems act as verifiers. While feasible
for verifying NIC firmware, this approach does not trivially
allow verification of all other peripherals in a full system.

Denial of Service. One malicious device can easily create
excessive bus traffic such that verification of another device
would fail. This can be interpreted as potentially being a
form of inter-device “blackmail”, but ultimately one has de-
tected that something is amiss in the system. Localizing the
source of the attack is a secondary problem.

8. RELATEDWORK
To identify malware on devices within a computer system,

Li et al. propose using software-based attestation to verify
the firmware of an Apple aluminum keyboard that runs an
8-bit microcontroller [18]. The current work represents a
significant extension in the same spirit as this work.

Duflot et al. [6] propose runtime firmware integrity ver-
ification of a network adapter by utilizing the debugging
features available on a Broadcom network adapter. The de-
bugging features enable the host CPU to single-step the mi-
crocontroller on the Broadcom NIC and inspect the memory
contents on the NIC by accessing the NIC’s MMIO registers.
Unfortunately, similar debugging features are not available
on all peripherals, and these features may themselves be
susceptible to impersonation. A more general mechanism is
needed to conduct the firmware integrity verification.

Lone Sang et al. discuss peer-to-peer attacks within com-
puter systems by leveraging DMA-based communication [27].
They propose approaches to prevent unauthorized communi-
cation between devices within a computer system, but they
do not propose any detection mechanisms for verifying the
integrity of the firmware of devices.

We now chronologically review previous work on software-
based attestation. Spinellis proposes “reflection” as an ap-
proach to verify the software running on a system [34]. Spinel-
lis sketches an approach that fills the memory with random
content, clears the system state and disables all interrupts,
computes a hash function over the entire memory, and fi-
nally returns the system state and hash to a verifier. The
verifier checks the execution time and returned information.
Unfortunately, Spinellis only presents a high-level approach
but no implementation details.

Kennell and Jamieson present Genuinity [17], an approach
where a verifier executes a verification function on an un-
trusted system to validate the system configuration. Gen-
uinity is based on the observation that simulating low-level
hardware is slower than actual execution on that hardware,
and intentionally creates randomized memory accesses that
create many cache misses. By validating the number of cache
misses the verifier can inspect whether the code was cor-
rectly executed. Shankar, Chew, and Tygar, however, point
out several issues with their approach [33].

Seshadri et al. introduced software-based attestation and



developed SWATT, a system to verify the software of an em-
bedded device [31]. SWATT relies on a checksum function
that computes a checksum over the entire memory contents
and is constructed to force an attacker to induce overhead
to compute the correct checksum. Seshadri et al. proposed a
variety of extensions: enable verification of a small amount
of memory on sensor nodes through the ICE function [29],
verification of code running on an Intel Pentium IV pro-
cessor through the Pioneer function [30], and code running
on an AMD Opteron K8 architecture through the Outpost
function [28]. Castelluccia et al. point out weaknesses in the
specific SWATT and ICE functions [4], triggering significant
discussion [25, 8]. The basic approach of software-based at-
testation remains sound, but special care has to be paid to
ensure security, as the current work demonstrates.
Concurrently, Gratzer and Naccache have presented a more

theoretical treatment of software-based attestation, which
relies on the assumption that the verifier can physically ob-
serve and reset the untrusted device and assuming that the
reset and execution times can be accurately observed [9].
Park and Shin have proposed soft tamper-proofing, an ap-
proach that fills memory with random data and executes
a hash function, however, without considering timing [24].
Shaneck et al. explore the use of encrypted and self-modifying
code to verify software on sensor nodes [32]. Their approach
also relies on randomized traversal and timing. Jakobsson
and Johansson have studied new approaches to software-
based attestation on mobile devices [15, 16].

9. CONCLUSIONS
Attackers have elevated malware to a new frontier: exe-

cuting invisibly on devices within a computer system. Such
malware can exploit DMA to compromise the OS or mis-
use PCI buses to compromise other devices. We address the
research challenge of how to reliably detect such malware.
This work shows how we extend previous software-based at-
testation mechanisms to defend against proxy attacks, where
the untrusted system obtains help for computing the time-
critical checksum from a remote party. By harnessing the
inherent properties of PCI buses, we have developed a new
approach for software-based attestation that can prevent the
proxy attack and simultaneously achieve lower verification
time overhead. We anticipate that our proposed techniques
will make software-based attestation practical on current
platforms and provide uncircumventable advantages to de-
fenders without relying on specialized hardware.
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