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Abstract

An important security challenge is to protect the execution

of security-sensitive code on legacy systems from malware

that may infect the OS, applications, or system devices. Prior

work experienced a tradeoff between the level of security

achieved and efficiency. In this work, we leverage the fea-

tures of modern processors from AMD and Intel to overcome

the tradeoff to simultaneously achieve a high level of security

and high performance.

We present TrustVisor, a special-purpose hypervisor that

provides code integrity as well as data integrity and secrecy

for selected portions of an application. TrustVisor achieves

a high level of security, first because it can protect sensitive

code at a very fine granularity, and second because it has

a very small code base (only around 6K lines of code) that

makes verification feasible. TrustVisor can also attest the ex-

istence of isolated execution to an external entity. We have

implemented TrustVisor to protect security-sensitive code

blocks while imposing less than 7% overhead on the legacy

OS and its applications in the common case.

1 Introduction

Current commodity operating systems and applications lack

formal assurance that the secrecy and integrity of security-

sensitive data are protected. The size and complexity of these

systems suggest that we will not achieve the level of assur-

ance necessary to guarantee the absence of security vulner-

abilities in these systems in the near future. Even the best-

engineered code contains bugs in proportion to its size [24],

and available formal methods – while holding great promise

for the future – are plagued by scalability challenges. Yet, the

convenience and low cost of commodity systems offer un-

matched appeal for both users and developers, dictating that

security-sensitive workloads will be run on these systems for

years to come.

This situation highlights the need for techniques to achieve

isolated execution of security-sensitive code without breaking

compatibility with legacy OSes. Indeed, in recent years many
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researchers have investigated approaches to execute security-

sensitive code while reducing the extent to which the legacy

OS and applications are included in the trusted computing

base for that code [7, 8, 14, 20, 22, 29, 30, 32, 35]. We

briefly lay out the design space explored by existing work

and discuss the granularity of the code that is protected.

One possibility is to isolate an entire application from

the OS. Several proposals are based on the use of a full-

featured commodity VMM that always runs beneath the

legacy OS [7, 8, 14, 32, 35]. These works achieve limited

security properties because the entire application and VMM

code needs to be trusted, bloating the trusted computing base

(TCB) by several hundreds of thousands of lines of code.

High performance is the main advantage of these approaches.

The Flicker system [22] represents the other extreme of

the granularity spectrum, because it protects fine granules of

security-sensitive code and adds only a few hundred lines

to the TCB. Unfortunately, Flicker incurs significant perfor-

mance overhead due to its frequent use of hardware support

for a dynamic root of trust for measurement (DRTM) [2, 16].

In this paper, we aim to achieve the best of both worlds:

protect small security-sensitive code blocks within a poten-

tially malicious environment and yet achieve high perfor-

mance for legacy applications. More specifically, our goal

is to provide data secrecy and integrity, as well as execution

integrity for security-sensitive portions of an application, ex-

ecuting the code in isolation from the OS, untrusted appli-

cation code, and system devices. Execution integrity is the

property that code P actually executes with inputs Pinputs and

produces outputs Poutputs. Finally, we also enable external

entities to receive attestations that describe the execution of

security-sensitive code and optionally its parameters.

To accomplish these goals, we develop a special-purpose

hypervisor, called TrustVisor, designed to provide a mea-

sured, isolated execution environment for security-sensitive

code modules without trusting the OS or the application that

invokes the code module. This environment is initialized via

a DRTM-like process called the TrustVisor Root of Trust for

Measurement, or TRTM. TRTM interacts with a software-

based, “micro-TPM” (µTPM) that is part of TrustVisor and

executes at high speed on the platform’s primary CPU. We

restrict our µTPM to providing only basic randomness, mea-

surement, attestation, and data sealing facilities. Additional

trusted computing features can be leveraged by directly inter-

acting with the hardware TPM.



We have fully implemented TrustVisor on an AMD plat-

form, and report on its design, implementation, and evalua-

tion. We also discuss the effort of porting several legacy code-

bases to take advantage of TrustVisor’s protections. Trust-

Visor works on commodity x86 hardware with virtualization

support by leveraging DMA protection [2] and 2D page walk-

ing [5]. These mechanisms enforce (IO)MMU-based protec-

tion of TrustVisor itself and application-level security-sensi-

tive code and data from the OS, other applications, and mali-

cious DMA-capable peripherals (e.g., malware such as rootk-

its that exploit software vulnerabilities in the OS or applica-

tions, or DMA writes via Firewire peripherals). Legacy OSes

and applications remain compatible with TrustVisor; changes

are only required to applications that wish to leverage the pro-

tected environment. TrustVisor imposes less than 7% over-

head in the common case, and has a TCB of only 6351 lines

of code, over half of which implements cryptographic opera-

tions for the µTPM.

TrustVisor enables many exciting applications, but is par-

ticularly well suited for implementing oracle-like properties

for portions of applications. For example, the security of

many cryptographic primitives is based on an assumption that

an adversary has access to only a particular interface for the

primitive. This assumption can be challenging to enforce in

a real-world system as a result of its hierarchical privilege

model and large TCB. However, when implemented on Trust-

Visor, the interface and consequently the attack surface can be

carefully constrained.

Contributions. We design and implement a comprehensive

system that enables application developers to achieve strong

security guarantees for their data and code executing on com-

modity platforms, and to prove those security properties to an

external verifier. The small TCB, efficiency, ease-of-use, and

commodity hardware support distinguish our approach from

previous efforts.

2 Adversary Model

We distinguish between a local adversary and a network ad-

versary, though the two may collude.

Local Adversary. We consider a local adversary with ac-

cess to two significant system interfaces. First, we assume

that the adversary can execute arbitrary code as part of the

legacy OS and applications. Second, the adversary can ac-

cess the system’s DMA-capable devices, e.g., Firewire inter-

face. Thus, the adversary may be able to read or write se-

crets in memory without modifying the legacy OS. We do not

consider physical attacks against the system’s CPU, memory

controller, main memory, Trusted Platform Module (TPM),

or the busses that interconnect them.

Given the hierarchical privilege structure of legacy OSes,

this model gives the adversary the ability to tamper with exe-

cuting code of the legacy OS, both while it executes and when

the relevant executable and configuration files are at rest in

non-volatile storage. Common manifestations of these abili-

ties are rootkits and Trojans.

This leaves us at the mercy of the adversary for availability.

However, we observe that today’s adversaries are financially

motivated and often prefer to keep machines online. Fur-

thermore, the adversary does not have the ability to interfere

with the operation of hardware virtualization features such as

virtual machine control blocks (VMCBs), nested page tables

(NPTs), and the device exclusion vector (DEV) that operate

with higher privilege than the legacy OS.

Network Adversary. We adopt the standard Dolev-Yao

threat model [12] for network communication, thus giving

the network adversary the ability to block, inject, or modify

network traffic between entities in our system. However, the

adversary cannot break cryptographic primitives.

3 Background

We describe the hardware dynamic root of trust mechanism

and the Flicker system [22], including its prerequisites, secu-

rity properties, and practical shortcomings.

3.1 Dynamic Root of Trust

Dynamic Root of Trust for Measurement (DRTM) is a mech-

anism available with AMD’s SVM extensions [2] and Intel’s

TXT extensions [16]. It enables the measured launch of a

protected code module at any time during a system’s opera-

tion. Measurement denotes computing a cryptographic hash

over code before it is executed. This process amounts to reini-

tializing all CPUs (but not other devices) to a well-known

state, computing a cryptographic hash over the relevant code

region after memory isolation and DMA protection mecha-

nisms are active, and before the launched code begins to exe-

cute. The measurement is extended into a Platform Configu-

ration Register (PCR) in the system’s TPM chip [33] in such a

way that this measurement can be distinguished as occurring

during the establishment of a DRTM (as opposed to a reboot).

This measurement process enables TPM-based remote at-

testation and data sealing. An attestation is a TPM-signed

list of PCR values that enables an external verifier to make

a security decision about the attesting platform. Sealing is a

TPM function whereby data is encrypted such that it can only

be decrypted if the TPM’s PCRs contain pre-defined values

(e.g., the values of a known-good version of a hypervisor).

We refer the interested reader to the relevant specifications

for additional background on the DRTM process [2, 15, 16].

3.2 The Flicker System

Flicker [22] demonstrates that it is possible to use current

trusted computing and hardware virtualization technologies

to dramatically reduce the TCB for certain security-sensitive

operations. Indeed, with Flicker, current commodity systems

are capable of securely executing code without the need to

trust the legacy OS. While a valuable proof-of-concept, sev-

eral characteristics of the Flicker system render it impractical

for use in situations with demanding performance (e.g., la-

tency, throughput) requirements.

Each Flicker session takes significant time to execute an

application that maintains secrets because slow TPM opera-



tions are on the system’s critical path. During Flicker ses-

sions, the user perceives that her system momentarily hangs.

This user-experience can be quite disruptive and the perfor-

mance impact is unacceptable on even a moderately loaded

(e.g., tens of users) server. We show that much higher perfor-

mance is attainable with current hardware by slightly extend-

ing the size of the trusted code, but still remaining an order of

magnitude smaller than commodity VMMs.

Further, Flicker requires the security-sensitive code of in-

terest to be custom-compiled and linked with very few ex-

ternal dependencies. This complicates the development pro-

cess and makes debugging more difficult. Though libraries of

commonly-used functions may be developed, a preferred so-

lution is one that can protect portions of existing legacy code

without modification. TrustVisor employs a registration pro-

cess compatible with existing code, obtaining its advantage

primarily from its ability to understand legacy OSes’ mem-

ory paging structures.

4 TrustVisor Design

In §4.1, we present a design overview of TrustVisor. We then

offer its detailed presentation in two passes. §4.2 describes

the memory protection mechanisms that provide isolation

between TrustVisor, the legacy OS, zero or more security-

sensitive codeblocks, and DMA-capable peripheral devices

on the platform running TrustVisor. §4.3 then presents the

trusted computing aspects of TrustVisor, including both the

roots of trust for TrustVisor itself and the trusted computing

support available to security-sensitive code.

4.1 Design Overview

A primary goal of this work is to enable the execution of

self-contained security-sensitive codeblocks – called Pieces

of Application Logic, or PALs – in total isolation from a

legacy OS and DMA-capable devices. We further seek to

initialize the isolated execution environment via a process re-

sembling a hardware DRTM, but we want to avoid the severe

performance penalty paid by Flicker (e.g., tens or hundreds

of milliseconds per session [22, 23]) as a result of its de-

pendence on hardware TPM operations and frequent use of

hardware DRTM. We introduce TrustVisor’s isolation mech-

anisms, and then its use of trusted computing.

Memory Protection. TrustVisor has three basic operating

modes (Figure 1). Host mode refers to execution of TrustVi-

sor code at the system’s highest privilege level. TrustVisor in

turn supports two guest modes: legacy and secure.

In legacy guest mode, a commodity x86 OS and its appli-

cations can execute without requiring any awareness of the

presence of TrustVisor. The legacy OS manages all periph-

eral devices on the system (network, disk, display, USB, etc.),

with the TPM as the only device shared between TrustVisor

and the untrusted legacy OS.1

1TPM chips are memory-mapped to multiple addresses, each correspond-

ing to a different privilege level called a locality [33]. TrustVisor’s memory

protections prevent the legacy guest from accessing privileged localities.
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Figure 1: TrustVisor memory protections from the perspec-

tive of executing code. (a) In host mode, TrustVisor is exe-

cuting in response to a trap or hypercall, and may manipulate

the state of a PAL, or the untrusted legacy OS or applica-

tions. (b) In legacy guest mode, TrustVisor isolates PAL state

and its own memory regions from the untrusted legacy code.

(c) In secure guest mode, a PAL is executing, and TrustVi-

sor isolates it from the memory regions of TrustVisor and the

untrusted legacy OS and applications.

In secure guest mode, a PAL executes in isolation from the

legacy OS and its applications. A PAL is identified to Trust-

Visor via a registration process that employs an application-

level hypercall interface, with the PAL execution environment

initialized by TrustVisor to a well-known, secure configura-

tion. Note that a PAL can also be a part of the OS itself if

making changes to the OS is practical. TrustVisor is orders

of magnitude smaller than a full OS, thereby bolstering its

ability to provide assured isolation between a PAL and all

untrusted code and devices on the system. All PAL input pa-

rameters are marshaled by TrustVisor into protected memory

before the PAL begins executing.

TrustVisor leverages available hardware virtualization sup-

port to provide memory isolation and DMA protection for

each PAL (Figure 2). In summary, TrustVisor provides isola-

tion by virtualizing a machine’s physical memory, enforcing

memory isolation between different PALs and untrusted code,

and protecting against malicious DMA reads and writes.

Trusted Computing. A DRTM-like mechanism provides

the valuable security properties of a known-good initial state,

memory protection from DMA accesses, and integrity mea-

surement of the launched code before it executes. We devise

a suitable mechanism for PALs called the TrustVisor Root of

Trust for Measurement, or TRTM. The TRTM is realized via

the inclusion of a TrustVisor-managed, software micro TPM

(µTPM) instance associated with each PAL (§4.3). The µTPM

executes on the platform’s primary CPU for high performance

while avoiding the TCB growth required of a full software

TPM implementation (e.g., vTPM [4]). The TRTM is instan-

tiated as part of the PAL registration process, and is designed

to serve as a “second-layer” dynamic root of trust, where the

PAL code is isolated and measured before it is executed. The

combination of the isolated environment, TRTM, and µTPM

offer PALs facilities for fine-grained remote attestation and

long-term protection of sensitive state with a small TCB.
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Figure 2: System architecture with TrustVisor. Applications

can register PALs for execution in isolation from the un-

trusted legacy OS and applications. The OS remains responsi-

ble for controlling the platform’s devices. The only interface

exposed to a PAL by TrustVisor is that of a µTPM. The sys-

tem’s physical TPM is shared by TrustVisor and the OS using

the TPM’s locality mechanism.
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Figure 3: Trust relationships in the TrustVisor architecture.

To distinguish between legacy code and PALs, we devise a

registration mechanism by which untrusted applications can

register selected code and data as security-sensitive. Regis-

tration triggers the sequence of TRTM operations, including

allocation of a µTPM instance and protection of the PAL’s

memory pages. Once registered, a PAL can be invoked mul-

tiple times without requiring a new TRTM operation. The

µTPM instance provides PALs with a facility for long-term

secret protection, and enables remote attestation that a partic-

ular PAL has executed.

TrustVisor enables remote attestation and long-term pro-

tected storage for PALs via the TRTM and µTPM associ-

ated with each PAL. TrustVisor is itself instantiated using the

hardware dynamic root of trust mechanism, thereby reducing

the TCB for TrustVisor and PALs executing thereupon, and

rooting trust in TrustVisor in the platform’s physical TPM.

Figure 3 shows the relationship of trusted components when

multiple PALs are registered. The shaded areas indicate the

trusted components in the TCB for a particular PAL.

4.2 Memory Protection Mechanisms

TrustVisor enforces code and execution integrity, and data se-

crecy and integrity. We first describe how TrustVisor protects

itself, and then show how TrustVisor provides these proper-

ties for PALs.

4.2.1 Hardware Memory Protections

TrustVisor must protect its own memory regions while also

isolating PALs from each other, from the legacy OS and its

applications, and from DMA-capable devices. We further

wish to support unmodified legacy OSes and legacy appli-

cations. Though it is our intention for PALs to be more trust-

worthy than the legacy OS, PALs are still programs written

by humans, and may be susceptible to compromise; e.g., spe-

cially crafted input may stimulate a latent bug in the PAL.

Thus, it is prudent to prevent PALs from arbitrarily accessing

other memory, as they may compromise the secrecy of data

belonging to other applications, e.g., security-sensitive legacy

applications or other PALs.

TrustVisor uses secure x86 hardware virtualization support

to securely bootstrap itself, as well as to enforce isolation be-

tween TrustVisor itself, the legacy OS, and PALs. Efficient

memory isolation and low hypervisor complexity are more

readily achieved given the increasingly wide availability of

2D hardware page walkers [5] that natively support separate

paging structures for virtual-to-physical address translation

in guest mode, and physical-to-machine address translation

in host mode (Figure 1). The memory regions accessible by

DMA-capable devices can also be restricted by the hypervi-

sor using modern platforms’ IOMMUs (Input/Output Mem-

ory Management Unit).

TrustVisor configures its page tables such that guest phys-

ical memory simply excludes the machine pages that con-

tain state that must remain inaccessible. Likewise, TrustVi-

sor programs the system’s IOMMU to prevent access to these

pages by DMA-capable devices. This design enforces code

integrity and data secrecy and integrity for both TrustVisor it-

self and PALs, since a compromised legacy OS can only ma-

nipulate the virtual CPU that is under the control of TrustVi-

sor. Even if the malicious OS reprograms DMA-capable de-

vices, the IOMMU will prevent access to TrustVisor or PAL

memory regions.

4.2.2 Protection Life-Cycle for PALs

We now describe the life-cycle of a PAL, which begins when

code is first identified as comprising a PAL via a registration

process. We detail how TrustVisor is configured to provide

code and execution integrity, and data secrecy and integrity,

to PALs. We define code integrity to be the property that code

P has not been modified from its intended version, and execu-

tion integrity to be the property that code P actually executes

with inputs Pinputs and produces outputs Poutputs. We discuss

these properties as a PAL progresses through registration, in-

vocation, termination, and unregistration.

PAL Registration. To avoid modifying the legacy OS to

support PALs, TrustVisor implements an application-level

hypercall interface for registering PALs (though PALs can

also be components of the OS if desired). The registration

interface allows application programmers to specify sets of

functions as security-sensitive. The specification includes a

list of function entry points, and input and output parameter



formats. This design makes it the responsibility of applica-

tion developers to identify the security-sensitive regions of

their programs and group sets of functions into one or more

PALs and untrusted portions. Essentially developers are re-

quired to perform privilege-separation.2

TrustVisor verifies that the specified addresses belong to

the calling application’s address space, and (un)marshals pa-

rameters between legacy mode and secure mode when PAL

functions are invoked. The registration hypercall returns an

error if the provided addresses are illegal.

While a PAL is registered, TrustVisor ensures that the ma-

chine physical pages that contain any relevant PAL state (both

code and data) are unmapped from the legacy OS’s guest

physical memory space. Any illegal access by the untrusted

application or legacy OS to read, write, or execute the PAL’s

registered pages will trap to TrustVisor. TrustVisor handles

illegal accesses by injecting a fault (e.g., General Protection

Fault, Segmentation Fault, or Bus Error) into the legacy OS,

which will handle it in accordance with that OS’s design (typ-

ically by terminating the offending process).

PAL Invocation. Following registration, the untrusted legacy

application and OS cannot read, write, or directly execute the

memory containing the PAL that it registered. However, the

functions inside the PAL can still be invoked using what ap-

pears to the developer to be an ordinary function call. Any

function call to code inside the PAL will trap to TrustVi-

sor. TrustVisor then performs the following three steps before

transfering control to the called function inside the PAL:

1. Identify which registered PAL contains the current

called sensitive function.

2. Switch from legacy guest mode to secure guest mode,

with secure guest mode configured so that only the pages

containing this PAL are accessible.

3. Prepare the secure-mode execution environment for the

called sensitive function. This includes marshaling input

parameters into isolated pages available to the PAL and

setting up the PAL’s stack pointer.

Passing pointers in and out of a PAL requires knowing the

size of the pointed-to area. (This information is provided

as part of the registration call, when entry-points are enu-

merated.) Thus, nested pointers (e.g., a pointer to a struct

that contains another pointer to a buffer) must be marshaled

by PAL developers during invocation. Likewise, a PAL that

wishes to output any of its state to the untrusted world can

do so simply by passing it as an output parameter. Note that,

despite TrustVisor’s protections, PAL developers must take

care to perform appropriate input parameter validation, as un-

trusted code may invoke a PAL with arbitrary inputs.

The application that registers a PAL is held responsible for

faults or exceptions caused by the PAL. TrustVisor zeros the

PAL’s state and injects the fault into the legacy OS. Thus, data

secrecy is maintained and applications can attempt recovery.

2While automatic privilege separation may be possible in some in-

stances [6], such mechanisms are beyond the scope of this paper.

PAL Termination. When a PAL has completed executing

and returns to the calling legacy application, TrustVisor once

again gets control. This happens because any attempt to exe-

cute code in secure mode outside the PAL causes a trap into

TrustVisor. TrustVisor performs the following two steps be-

fore transfering control back to the legacy application:

1. Marshal any returned parameters and make them avail-

able to the calling untrusted application.

2. Switch from secure guest mode to legacy guest mode,

in which the pages containing the PAL are once again

inaccessible from guest mode.

The PAL’s execution state is left intact, so that the cor-

responding untrusted application can invoke it a second time,

e.g., with different input parameters. Thus, PALs should clear

their sensitive state to ensure semantic security if warranted

by application requirements.

PAL Unregistration. Unregistration is normally initiated

by the application that originally registered a particular PAL.

However, it can also be initiated by the legacy OS if a PAL

exits due to an error (e.g., a null-pointer exception). Either

way, other than the PAL’s output parameters, TrustVisor ze-

ros all execution state associated with that PAL. Once all PAL

state is cleared, the relevant pages are once again marked ac-

cessible to the untrusted OS.

4.3 Trusted Computing Mechanisms

Trusted computing mechanisms are used to provide two basic

capabilities for TrustVisor and the PALs it supports. The first

is a sealed storage mechanism, by which a particular PAL can

encrypt data along with a policy such that the resulting cipher-

text can only be decrypted by the PAL specified in the policy.

The second is a remote attestation mechanism by which a re-

mote party can be convinced that a particular PAL indeed ran

on a particular platform (optionally with particular inputs and

producing particular outputs) protected by TrustVisor. Both

of these mechanisms are enabled by an integrity measurement

process that maintains a set of measurements (cryptographic

hashes) of all code in the TCB for a PAL of interest.

The security properties provided by these mechanisms ul-

timately stem from hardware roots of trust – the TPM chip

and the platform’s chipset and CPU support for dynamic root

of trust. However, as it is our goal to enable arbitrarily many

PALs to be registered with TrustVisor concurrently, we must

provide a means to delegate the hardware root of trust to PALs

as needed. This is accomplished through a software µTPM in-

stance associated with each registered PAL. The µTPM main-

tains integrity measurements and enables sealed storage and

attestation for a specific PAL. We detail the interactions be-

tween hardware trusted computing primitives provided by the

TPM and chipset, TrustVisor, µTPM instances, and PALs.

4.3.1 Roots of Trust and Integrity Measurement

Code integrity measurement is a prerequisite for remote at-

testation and long-term data protection. It comprises keeping

track of the cryptographic hash of all software that has been



loaded for execution in the TCB for some operation. For a

particular PAL, this amounts to TrustVisor and the PAL it-

self. Integrity measurement provides a trustworthy source of

information about what code has been loaded for execution

to use in remote attestations. Further, it serves as a means for

controlling access to the cryptographic keys used by sealed

storage to provide long-term data secrecy and integrity on a

per-PAL basis.

Two-Level Integrity Measurement. TrustVisor employs a

two-level approach for integrity measurement. The physical

TPM stores measurements of TrustVisor when it is invoked

via hardware DRTM, and TrustVisor in turn measures each

PAL when it is registered. This design is intended to avoid

Flicker’s performance issues and monopolization of the plat-

form’s DRTM capabilities. PAL integrity measurements are

maintained in a software µTPM that exposes trusted comput-

ing and dynamic root of trust capabilities to PALs.

Every registered PAL has its own distinct µTPM instance

that is created as part of the PAL registration process. How-

ever, the µTPM is not created until after TrustVisor’s memory

protection mechanisms are actively enforcing that no other

code or devices on the platform can tamper with this PAL’s

memory pages. Following µTPM creation, a measurement

of the PAL is extended into the µTPM. This measurement in-

cludes PAL metadata, including its size and legal entry points.

This atomic (from the perspective of the PAL) isolate-then-

extend sequence during registration constitutes the establish-

ment of the TRTM. Further, the TCB includes only TrustVi-

sor and the PAL itself (Figure 3). Note that µTPM instances

are zeroed and freed whenever a PAL is unregistered, which

may be during normal operation or in response to an error.

Measurements extended into a µTPM instance are stored in

micro Platform Configuration Registers (µPCRs) within the

µTPM instance. Thus, TRTM imitates the functionality of

the dynamic root of trust provided by the platform’s physi-

cal TPM, but with the relevant TPM operations performed in

software by the µTPM. This enables multiple µTPM instances

to exist concurrently, and removes the slow TPM chip from

critical-path measurement and data sealing operations.

Measuring Parameters. PAL input parameters, and any

outputs produced, can be measured (extended into a µPCR) if

the PAL is written to do so, thereby enabling the presence (or

absence) of certain inputs and outputs to serve as additional

access control to sealed data, and to be attested to remote

parties. A PAL written to take full advantage of these capa-

bilities achieves the strongest execution integrity properties.

This gives PAL developers maximum flexibility in managing

parameters (Figure 4).

4.3.2 µTPM Functions

We describe the µTPM design that TrustVisor exposes to

PALs. Many of the more sophisticated TPM functions re-

main useful to a system running TrustVisor and executing

PALs, but they can be leveraged at the whole-system layer

of abstraction. An example is the generation of Attestation

Identity Keys (AIKs). Multiple AIKs can be generated by

the system’s physical TPM, and a particular AIK can be used

when attesting to a particular PAL running on top of Trust-

Visor. This does not require any explicit action from the

PAL or µTPM. Additionally, migrating TPM-sealed data be-

tween physical platforms is accomplished via migration of

TrustVisor-level secrets. The higher-level, µTPM-sealed data

will unseal perfectly on the relocated TrustVisor.

The small number of commands included in our µTPM

design help to keep the TrustVisor TCB small. TrustVisor

accesses the TPM chip via its Locality 2 interface during

platform startup and shutdown [33], and prevents the legacy

OS from accessing this interface. TrustVisor exposes Local-

ity 1 (less privileged) access to the physical TPM chip to the

untrusted legacy guest OS (Figure 2), thereby maintaining

compatibility with existing TPM-based applications (e.g., the

open-source TCG Software Stack [33]).

The software µTPM interface that TrustVisor exposes to

PALs includes the following TPM-like functions:

1. HV Extend for measuring code and data,

2. HV GetRand for obtaining random bytes,

3. HV Seal and HV Unseal for sealing and unsealing data

based on measurements, and

4. HV Quote to attest to measurements in µPCRs.

The secrecy and integrity of µTPM-sealed data is protected

by symmetric cryptographic primitives performed in Trust-

Visor. These mechanisms are a significant source of Trust-

Visor’s efficiency for trusted computing operations. Previ-

ous systems rely on the TPM’s low-cost CPU to perform

asymmetric sealing and quote operations, or monopolize the

TPM’s scarce non-volatile (NV) RAM, whereas TrustVisor

executes the HV * family of trusted computing operations

on the platform’s primary CPU, and uses efficient symmet-

ric primitives for HV Seal and HV Unseal.

We now detail the design of TrustVisor’s µTPM interface.

HV Extend. TrustVisor allocates memory from its own ad-

dress space for the µPCRs in the µTPM for each PAL. PALs

can be written to invoke HV Extend with arguments of their

choosing, thereby enabling measurement of input and output

parameters, run-time configuration, dynamically loaded ex-

ecutable code, and any other data that may be relevant to a

particular PAL. The semantics of HV Extend are identical to

those of the hardware TPM’s TPM Extend: Given a measure-

ment m← SHA−1(data), a particular µPCR is extended as

follows: µPCRnew← SHA−1(µPCRold||m).
HV GetRand. PALs rely heavily on cryptography because

all access to non-volatile storage or network communica-

tion involves data travelling through the potentially mali-

cious legacy OS. Thus, it is essential that PALs have a good

source of random numbers for generating keys and nonces.

HV GetRand returns the requested number of bytes using

a pseudo-random number generator (PRNG) seeded by ran-

domness from the system’s hardware TPM. The interface ex-

posed to PAL code is identical to that of the hardware TPM’s

TPM GetRand. The PRNG enables HV GetRand to dramat-



/* App A */
call foo()

/* PAL */

foo() {

  HV_Unseal()

  doWork()

  HV_Seal()

Isolation

µTPM

Marshaling

Unmarshaling

1.

2.

3.

4.

Figure 4: TrustVisor and µTPM-based protections for a PAL

containing function foo. (1) Input parameters are marshaled

by TrustVisor from untrusted code into the PAL. (2) The PAL

can invoke the µTPM Unseal command to decrypt previously

created secrets. (3) After the PAL serves its purpose, sensitive

state can once again be sealed using the µTPM. (4) Outputs

from the PAL are unmarshaled back to untrusted code.

ically outperform the corresponding TPM GetRand by exe-

cuting on the platform’s main CPU, since in the common case

no low-speed hardware TPM operations are required.

HV Seal and HV Unseal. These functions are also de-

signed to present the same interface as their v1.2 TPM Seal

and TPM Unseal counterparts [33]. The primary differ-

ence is that instead of authorizing decryption based on val-

ues stored in the physical PCRs in the system’s TPM chip,

these functions operate based on the values in the µPCRs in

the µTPM instance maintained by TrustVisor for a particular

PAL. HV Seal gives PALs the ability to specify the required

state of the µPCRs for the data to be unsealed. HV Unseal

will only succeed if the values in the µPCRs, at the time when

HV Unseal is invoked, match those specified as arguments to

the original HV Seal call.

HV Seal outputs a ciphertext that should be included as

one of the inputs to a later call to HV Unseal. It is the re-

sponsibility of the untrusted application code to maintain this

ciphertext on a non-volatile storage device (e.g., hard disk)

for future retrieval, if it is desired that the data survive sys-

tem reboots or multiple register-unregister cycles of the same

PAL. Note that data sealed on one physical TPM cannot be

unsealed on a different physical TPM. However, we do allow

data sealed by the µTPM associated with one PAL to be un-

sealed by the µTPM associated with another PAL. This pro-

vides the ability to establish a secure channel between multi-

ple PALs. Figure 4 shows a PAL using µTPM-based sealed

storage to protect data across multiple registration cycles.

The data sealed by a µTPM is protected using authenti-

cated encryption [18] with keys maintained by TrustVisor it-

self. TrustVisor protects its own secrets using cryptographic

keys sealed by the TPM to the PCR containing the DRTM

measurement of TrustVisor. Thus, during TrustVisor boot,

these keys are unsealed in a call to the physical TPM. Like-

wise, any changes in these keys must be re-sealed using a call

to the physical TPM prior to system shutdown.

HV Quote. We have designed HV Quote to offer fewer op-

tions than the corresponding TPM Quote function. The rea-

son for this is the natural tension between security and privacy

in remote attestation, and our desire to keep the TCB small.

HV Quote uses a single RSA identity keypair µAIK across all

PALs (µTPM instances), which is generated in a determinis-

tic fashion from the AIK (Attestation Identity Key) currently

in use in the system’s physical TPM. We generate µAIK by

seeding a pseudo-random number generator (PRNG) with a

TrustVisor-maintained secret and the active public AIK. µAIK

can then be regenerated at a future time without requiring

storage of µAIK itself. In this way, the existing TPM-based

mechanisms for protecting the privacy of an attesting system

apply equally well to TrustVisor and the PALs running there-

upon. Once an identity keypair has been generated, it can be

cached by TrustVisor and maintained in non-volatile storage

using TPM Seal (sealed to the code image of TrustVisor) on

the system’s physical TPM. This enables rapid loading during

subsequent boot cycles of TrustVisor.

4.3.3 Attestation and Trust Establishment

Attestation enables a remote entity to establish trust in Trust-

Visor, and subsequently in PALs protected by TrustVisor.

Building on the two-level integrity measurement mechanisms

described in §4.3.1, we also design a two-part attestation

mechanism. First, we use TPM-based attestation to demon-

strate that a dynamic root of trust was employed to launch

TrustVisor with hardware-enforced isolation. Second, we use

µTPM-based attestation to demonstrate that TRTM was em-

ployed to launch a particular PAL with TrustVisor-enforced

isolation. Thus, the ultimate root of trust in a system running

TrustVisor stems from TPM-based attestation to the invoca-

tion of TrustVisor using hardware DRTM.

TPM-Generated Attestation. An external verifier that re-

ceives a TPM-generated attestation covering the PCRs into

which TrustVisor-relevant binaries and data have been ex-

tended conveys the following information to the verifier:

• A dynamic root of trust (e.g., AMD’s SKINIT instruc-

tion) was used to bootstrap the execution of TrustVisor.

• TrustVisor received control immediately following the

establishment of the dynamic root of trust.

• The precise version of TrustVisor that is executing is

identifiable by its measurement in one of the PCRs.

• TrustVisor generated an identity key for its µTPM based

on the current TPM AIK.

Note that the verifier must learn the identity of the AIK by

some authentic mechanism, such as pre-configuration by an

administrator or system owner. In some cases trust-on-first-

use may even be reasonable, but we emphasize that the choice

of mechanism is orthogonal to the architecture of TrustVisor.

µTPM-Generated Attestation. An attestation from Trust-

Visor consists of an HV Quote operation, along with addi-

tional measurement metadata3 to facilitate the verifier’s mak-

ing sense out of the values in the µPCRs. The verifier must

first decide to trust TrustVisor based on a TPM attestation. If

3The nuances of validating untrusted measurement lists using trustworthy

TPM-style measurement aggregates are be beyond the scope of this paper.

IBM’s IMA discusses one possible mechanism [28].



Remote has AIKpublic,

Party (RP): expected hash(TrustVisor) = Ĥ

TV: TPM Extend(PCR[18], h(µAIKpublic))
RP: generate nonce,n1← h(1||nonce),n2← h(2||nonce)
RP→ App: n1,n2

App→ PAL: n2

App: q1← TPM Quote(PCR[17,18], n1)

PAL: q2← HV Quote(µPCR[0], n2)

App← PAL: q2

RP← App: q1, q2

RP: if (¬Verify(AIKpublic,q1,n1)

∨ q.PCR17 6= h(0||Ĥ)
∨ q.PCR18 6= h(0||h(µAIKpublic))
∨¬Verify(µAIKpublic,q2,n2)

) then abort

RP: µPCR array represents a valid PAL run.

Figure 5: Attestation protocol. Remote Party verifies that a

particular attestation represents a legitimate run of a PAL.

TrustVisor is untrusted, then no trusted environment can be

constructed using TrustVisor. A verifier learns the following

information as it analyzes the contents of the µPCRs:

• µPCR [0] always begins with 20 bytes of zeros extended

with the measurement of the registered PAL. Thus, the

verifier can learn precisely which PAL was registered

and invoked during this session on TrustVisor.

• The values in the remaining µPCRs and any other values

extended into µPCR [0] are specific to the PAL that exe-

cuted, and will not have been influenced by TrustVisor.

• The set of µPCRs selected for inclusion in HV Quote

(and a nonce provided by the remote verifier to ensure

freshness) will be signed by TrustVisor’s µTPM identity

key µAIK, generated as described in §4.3.2.

Note that the verifier can confirm precisely which PAL

executed, and that a PAL constructed to measure its inputs

and outputs enables the verifier to learn that the execution in-

tegrity of this PAL is intact. Figure 5 illustrates the attestation

protocol used to convince an external verifier that a particular

PAL ran on a particular system with TrustVisor’s protections.

5 Implementation

We now describe our implementation of TrustVisor. Cur-

rently TrustVisor is AMD-specific, but its design applies

equally well to widely available Intel systems that include

support for both 2D page walks and dynamic root of trust.

TrustVisor is a tiny hypervisor that leverages modern x86

hardware virtualization with the latest Nested Page Table

(NPT) support and either a Device Exclusion Vector (DEV)

or full IOMMU (e.g., AMD’s [2]) support: (1) to keep the

software TCB small and (2) to maintain binary compatibility

with various legacy x86 OSes. We have developed a full, sta-

ble implementation of TrustVisor as described in §4, though

our implementation currently lacks SMP support. We run our

experiments on an off-the-shelf Dell PowerEdge T105 (§6).

We present our implementation in the same order that

we presented TrustVisor’s design: memory protection mech-

anisms for TrustVisor and PALs first (§5.1), then trusted

computing mechanisms including our µTPM implementation

(§5.2). Note that this means TrustVisor’s steady-state opera-

tion is presented before its boot-up using the trusted comput-

ing mechanism dynamic root of trust.

5.1 Protecting TrustVisor and PALs

Based on AMD’s SVM hardware virtualization, TrustVisor

runs as the host while the Linux Kernel and applications run

as a guest. Thus, TrustVisor executes at a more privileged

CPU protection level (ring on x86) than the Linux kernel.

However, to protect itself and PALs, TrustVisor needs to cre-

ate an isolated environment for them. We first describe the

basic memory isolation mechanism employed by TrustVisor.

Then, we present how TrustVisor handles the registration pro-

cess for PALs. Finally, we explain how TrustVisor enables a

protected environment for PAL execution.

5.1.1 Memory Isolation for TrustVisor

To achieve memory isolation, TrustVisor virtualizes the guest

OS’s physical memory using the 2D nested page table (NPT)

hardware feature provided by AMD SVM. The NPTs are

maintained by TrustVisor in host mode, while the guest OS

continues to maintain its own page tables to translate guest

virtual addresses to guest physical addresses (i.e., the guest

OS need not be aware that it is virtualized). At runtime, guest

physical addresses are further translated to machine physical

addresses by the CPU using the corresponding NPT. Trust-

Visor maintains only one set of NPTs for the guest, which

is simply an identity mapping from guest physical addresses

to machine physical addresses. TrustVisor uses 2 MB page

granularity in the NPTs to improve performance by reducing

TLB pressure.

To protect itself, TrustVisor sets the NPT permissions such

that its physical pages can never be accessed through the NPT

from guest mode. To protect its physical pages against DMA

access by devices, TrustVisor uses the DEV (Device Exclu-

sion Vector) mechanism, which is a simplified IOMMU (In-

put/Output Memory Management Unit) provided by AMD

SVM. With DEV support, the system’s memory controller is

designed to provide DMA read and write protection for phys-

ical pages on a per-page basis. TrustVisor sets up DEV pro-

tection to cover all of its own physical pages. To prevent an

attacker from modifying the DEV settings, TrustVisor also in-

tercepts all PCI configuration space accesses from the guest.

If TrustVisor finds any attempt to access the DEV, it will sim-

ply respond as if the device does not exist.

The protection mechanisms described above for TrustVisor

are statically set up during initialization. TrustVisor also uses

similar mechanisms to protect PALs. However, due to the

registration feature TrustVisor exports for PALs, those protec-

tions have to be set up dynamically at runtime. We describe

the details below.

5.1.2 PAL Registration

Application developers must explicitly register and unregister

the PAL(s) for their application (recall §4.2.2). Both registra-



tion and unregistration consist of a hypercall with parameters

to describe the PAL to be registered. These hypercalls are in-

tercepted directly by TrustVisor without legacy OS awareness

using the VMMCALL instruction.

We have developed simple build-process linker scripts to

automate the process of placing sensitive code and regular

code on separate pages, as well as allocating pages for a

PAL’s data and parameters. There are six types of sensi-

tive memory pages: PAL entry point code pages, PAL-private

code pages, code pages shared between PALs and untrusted

applications, PAL data pages, PAL runtime stack pages, and

PAL parameter marshaling pages. All of the functions that

contain intended entry points to PAL code are collected

and linked into an explicit entry-point region that cannot be

shared. PAL-private code regions are used to hold all read-

only, unshared, PAL-specific code. The shared code region

includes routines that may be called by the untrusted appli-

cations or other PALs. Sharing is only allowed for read-only

pages, with shared pages commonly resulting from Linux’s

copy-on-write functionality during process forking, and from

memory mapping and demand paging common code pages

for multiple instances of the same binary executable or li-

brary. Part of the PAL build process isolates the PAL’s initial-

ized and uninitialized data into a dedicated PAL data region,

and further allocates additional pages for use as the PAL’s

stack and as the PAL-accessible location for marshaled input

and output parameters. We note that there is no explicit PAL

heap. We implement dynamic memory allocation for PALs as

a stand-alone library that can be optionally linked into each

PAL, that from the perspective of the build process simply

includes a large (the size of the heap) static buffer.

During registration, TrustVisor accepts the start address

and the size of each page region of the PAL, a list of valid

entry points, and information describing the input and output

parameters for each entry point. TrustVisor performs three

steps to set up the protections for a PAL during registration.

First, TrustVisor collects all the physical pages that corre-

spond to each page region by walking the current guest page

tables. Note that TrustVisor needs to check that all the per-

mission bits of the guest page table entries during page table

walking are consistent with the intended permissions of each

page region. This prevents a malicious application from tak-

ing advantage of TrustVisor to violate the permissions set by

a well-behaved OS, e.g., by attempting to register read-only

application pages as writable PAL pages. TrustVisor also

needs to save the base address of the current guest page table

structure from the guest’s CR3 register as part of an indica-

tor that can be used to identify this PAL in the future. Sec-

ond, TrustVisor sets up permissions for all the correspond-

ing machine physical pages in the NPT structures. All of

the corresponding machine pages (except for any shared code

pages) are marked as not accessible from the guest. TrustVi-

sor also sets up DEV protection for those pages, to prevent

malicious DMA accesses. Third (now that isolation is con-

figured), TrustVisor creates a µTPM instance dedicated to the

newly registered PAL, and performs the first measurement of

the PAL’s non-data pages to instantiate the TRTM.

We leverage Linux’s copy-on-write feature to generate

multiple copies of non-read-only PAL pages and pages con-

taining PAL entry points. During registration, one byte on

each page is written with its current value to force Linux to

make a duplicate using copy-on-write. This requires code

pages (such as the pages containing the PAL entry points)

to be temporarily marked writable during registration. For

performance reasons, whenever changing permissions in the

NPT, TrustVisor changes between 2 MB and 4 KB NPT gran-

ularities as necessary. Essentially, 2 MB pages are used to

map contiguous regions 2 MB or larger, since this will con-

sume only a single TLB entry. 4 KB pages are used to map

smaller regions, such as a PAL’s stack pages.

Note that any attempt by the untrusted legacy OS or its

applications to write to any registered page, or to read from

any non-shared registered page, will cause a nested page fault

(NPF) that will be caught by TrustVisor. If an overlapping

registration of non-shared pages is attempted, the registration

hypercall will return a failure code to the calling guest ap-

plication. Valid calls to PAL entry points are allowed, but

all other illegal accesses will be prevented by TrustVisor.

Our current prototype halts at this point to aid debugging,

but a production implementation should inject a fault (e.g.,

SIGSEGV, bus error) into the legacy guest so that it can re-

claim resources from the misbehaving process.

Unregistration is initiated via a hypercall from the un-

trusted portion of an application. During unregistration,

TrustVisor first verifies that the physical page numbers in-

side the PAL and the current CR3 in the guest have already

been registered. If so, sensitive data pertaining to the PAL

is zeroed, including the data region of the PAL and the cor-

responding µTPM inside TrustVisor. Finally, protections are

removed from the NPT and DEV for all the physical pages

corresponding to this PAL. All registration information for

this PAL is removed from TrustVisor’s state.

5.1.3 Sensitive Environment Switching

TrustVisor needs to transparently get control of the system

when any sensitive function is called by the application, and

when the sensitive function returns to the calling application.

TrustVisor switches between legacy mode and secure mode at

those points and marshals the relevant parameters. TrustVi-

sor’s memory virtualization implementation based on NPTs

makes this interposition straightforward. In legacy mode, the

pages that belong to the registered PAL are marked as inac-

cessible. This guarantees that when the application running in

legacy mode attempts to execute the sensitive code or touch

the data inside the PAL, the CPU will generate a nested page

fault and trap into TrustVisor. TrustVisor uses the page per-

missions of the page(s) containing PAL entry points to guar-

antee a trap to TrustVisor whenever a sensitive function is

called. Note that the valid entry points for a PAL must not be

on a shared page.



Analogously, in secure mode, all the pages that are not part

of the current PAL are inaccessible to it, and the PAL will

cause a nested page fault (that will be caught by TrustVi-

sor) whenever they are touched (read, written, or executed).

Therefore, TrustVisor will always get control during transi-

tions between legacy mode and secure mode. The input data

available to a PAL is marshaled by TrustVisor, and is verified

by TrustVisor’s parameter checking. (Recall that TrustVisor

will return a failure code from the registration hypercall if

parameter checking fails.)

We now describe the operations that TrustVisor performs

to switch from legacy mode to secure mode to guarantee the

execution integrity of the PAL (in response to a trap as de-

scribed above). First, TrustVisor configures the PAL code in

secure mode to run in ring 3 with interrupts disabled. Any ex-

ceptions generated by the PAL code will be caught by Trust-

Visor and interpreted as an illegal action performed by the

PAL (e.g., a null-pointer dereference or divide-by-zero).

Second, TrustVisor configures the NPTs such that only the

physical pages belonging to this PAL are accessible from the

guest. However, since we run PALs within a subset of the

current application’s execution environment, we also need to

let the guest have access to some critical system resources,

such as the GDT, the LDT, and guest page tables that are used

to translate addresses for the GDT, LDT and PAL. Thus, in

the third step, TrustVisor configures the NPTs so that pages

containing these critical system resources are accessible from

the guest with read-only permission.

In the fourth step, TrustVisor verifies that the system bit in

each of the guest page table entries corresponding to TrustVi-

sor and the critical system resources is correctly set, so that

the PAL running in ring 3 cannot write any information to the

pages containing the critical system resources, or read any in-

formation from the pages for which the PAL does not have

read permission. Note that well-behaved Linux will already

have the system bit set for these pages, but with our attacker

model a rootkit may have modified them arbitrarily.

Finally, TrustVisor must ensure that the PAL page map-

pings configured during registration cannot be subsequently

changed (e.g., re-ordered) by the legacy OS. Each PAL’s

guest physical pages are inaccessible to the legacy guest due

to the NPT configuration during PAL registration, so the con-

tents of the pages themselves are protected from illegal mod-

ification. However, we must still ensure that the virtual-to-

physical address translation of registered PAL pages has not

been changed since registration. This verification will pre-

vent a malicious OS from compromising PAL code integrity

by making clever changes to PAL page tables, e.g., changing

the virtual address of an entry point code page to point to the

physical address of a PAL-private code page.

The steps described above show that TrustVisor sets up

a highly restricted, secure environment for executing PALs.

TrustVisor also marshals input and output parameters, copies

the memory regions corresponding to these parameters into

the PAL’s parameter marshaling pages, saves the legacy OS

stack pointer, and initializes the stack pointer within the PAL.

The pages allocated for use as the secure mode stack and pa-

rameter storage are identified during registration and need to

have been allocated by the untrusted code prior to PAL regis-

tration. However, before copying the memory regions cor-

responding to input parameters, TrustVisor needs to check

that those memory regions are readable by the guest. If

the parameter is a reference, TrustVisor also needs to check

that the memory region of that parameter is writable by the

guest. These operations will prevent a malicious application

from passing incorrect parameters to TrustVisor and tamper-

ing with the memory permissions set by the OS. Note that de-

spite TrustVisor’s protections, semantic security for PALs de-

pends on PALs performing responsible input parameter han-

dling, the details of which are beyond the scope of this paper.

Finally, TrustVisor transfers control to whichever sensitive

function is called by the application. The return point in the

application is saved in TrustVisor so that it cannot be modified

by a malicious PAL. This prevents a malicious application

from using a PAL to attempt control-flow attacks.

After the sensitive function returns to the untrusted applica-

tion, TrustVisor needs to perform the opposite steps to switch

from secure mode back to legacy mode. First, TrustVisor

marshals the output parameters back into the untrusted por-

tion of the application and recovers the stack pointer in the

guest. Note that a PAL cannot return heap data in our current

implementation – a buffer for such outputs needs to have been

allocated by the untrusted application and passed as an input

parameter to the PAL. Then, TrustVisor updates the NPTs to

mark all the pages that are not part of the PAL as accessi-

ble from the guest, and sets the PAL pages as inaccessible

from the guest. Finally, TrustVisor transfers control back to

the legacy application, so that the application can process the

results returned by the PAL and continue to run. Note that

a PAL that makes an explicit call (as opposed to a return) to

untrusted code will be terminated as described in §4.2.2.

5.2 Trusted Computing Implementation

We describe how TrustVisor initializes itself using dynamic

root of trust to achieve a trusted boot process. We then de-

scribe how µTPM instances are implemented in TrustVisor.

5.2.1 Trusted Boot

We use AMD’s SKINIT instruction to create a dynamic root

of trust to bootstrap TrustVisor starting from an initially un-

trusted system state (§3.1). We note that bootstrapping a hy-

pervisor with DRTM is its intended function. Contemporary

projects for booting with DRTM include Kauer’s Open Se-

cure Loader [19] and Intel’s “tboot”.4

We now explain how we create an unbroken chain of

trust from TrustVisor’s launch to the execution of PALs from

within Linux applications (currently we have tested v2.6.21

of the Linux kernel with the Fedora Core 6 patchset, and

v2.6.27 with the Ubuntu 8.10 patchset).

4http://tboot.sourceforge.net/



TrustVisor is invoked in a three-step process by the boot-

loader (e.g., grub). First, an untrusted loader we have de-

veloped called TLoader relocates the Linux kernel and initial

ramdisk so that they will be able to execute when invoked

as a guest by TrustVisor. TLoader also relocates the trusted

initialization portion of TrustVisor so that it is aligned on a

64 KB boundary – a requirement for SKINIT.

TLoader’s final operation is to launch TrustVisor by invok-

ing the SKINIT instruction, which reinitializes the system’s

bootstrap processor (BSP) to a trusted state, enables DEV

protection for the TrustVisor image, measures it, and trans-

fers control to the TrustVisor entry point. Since the maximum

length of the memory region that SKINIT can measure atom-

ically is 64 KB, we split TrustVisor into two parts: initializa-

tion and runtime portions. The initialization portion is less

than 64 KB and meets the requirements for measurement by

SKINIT. After the start address and size of the initialization

portion are passed to SKINIT for measurement, the initializa-

tion portion takes control of the system and further initializes

a protected environment for the runtime portion.

Specifically, the initialization portion relocates the runtime

portion to the top of physical memory, so that TrustVisor can

present the illusion to the untrusted guest OS (e.g., Linux)

that the system is equipped with slightly less (see §6) phys-

ical memory (RAM). Note that this design significantly re-

duces hypervisor complexity since guest physical addresses

are also machine physical addresses. Before invoking the run-

time portion, the initialization portion sets up AMD’s Device

Exclusion Vector to provide DMA protection for the runtime

memory region. Then, the initialization portion hashes the

memory region of the runtime portion and compares it with

a built-in hash value. If the runtime portion passes the veri-

fication, then the initialization portion transfers control to the

runtime portion. At this point, the initialization portion can

be cleared and freed.

The runtime portion of TrustVisor sets up a Virtual Ma-

chine Control Block (VMCB) for the legacy guest OS and

prepares access to the necessary resources for the correspond-

ing VM. It then boots Linux inside the VM. Thus, the runtime

TCB comprises only the runtime portion of TrustVisor, which

is verified by a chain of trusted software since SKINIT.

5.2.2 µTPM Implementation

Our µTPM implementation is part of TrustVisor. TrustVi-

sor maintains three long-term secrets using TPM sealed stor-

age. These are the encryption and MAC keys used to pro-

tect the secrecy and integrity of data sealed (using HV Seal)

by a µTPM instance, and the PRNG seed used to derive the

µTPM’s µAIK keypair. For the µTPM seal and unseal opera-

tions, we use AES-CBC with 128-bit keys and HMAC-SHA-

1 with 160-bit keys for secrecy and integrity protection, re-

spectively. We use a 160-bit TPM-generated random PRNG

seed. The µAIK keypair is a 2048-bit RSA signing keypair,

and is used when a PAL invokes HV Quote. A unique array

of 8 µPCRs is allocated for each PAL, and used in the HV *

Dbg Init. Runtime .h

C + ASM Core µTPM RSA Lib Total

507 773 + 128 1943 619 2339 1580 6481 2790

Table 1: Lines of code in C, assembly, and header files.

family of operations from §4.3.2. The data structures used

to enforce the required µPCR values during HV Unseal are

identical to those employed by the physical TPM [33].

6 Evaluation

We present the TCB size of our TrustVisor implementation

(§6.1). We then present the performance impact on a legacy

system running on TrustVisor (§6.2), since these results ex-

plain the basic hardware virtualization overhead intrinsic to

the design of TrustVisor. We also evaluate the performance

for PALs on TrustVisor and compare it with Flicker (§6.3).

Our experimental platform is a Dell PowerEdge T105 with

a Quad-Core AMD Opteron running at 2.3 GHz. Our cur-

rent implementation of TrustVisor allocates 2 GB of RAM

to the Linux kernel and supports only a uniprocessor guest.

Additional cores and RAM are unused. Our server runs the

32-bit version of the Fedora Core 6 Linux distribution for

the experiments that follow, although no kernel modifications

were made other than including “nosmp” on the kernel com-

mand line. We have successfully booted other kernels, e.g.,

v2.6.27 with Ubuntu’s patchset. Since TrustVisor is binary-

compatible with the legacy OS, experiments with and with-

out TrustVisor are run on the identical nosmp kernel image.

For network benchmarks, we connect another machine via a

1 Gbps Ethernet crossover link and run the T105 as a server.

6.1 Trusted Computing Base

We evaluate how our implementation maintains a small TCB

and compatibility with unmodified legacy software.

Reduced TCB. We use the sloccount5 program to count the

number of lines of source code in TrustVisor (see Table 1).

We divide TrustVisor’s code into four parts. The debug code

provides printf and serial console functions which are not re-

quired on a production system. The initialization code is the

initialization portion described in §5.2.1, which is measured

by SKINIT and initializes the protected environment. Fi-

nally, the runtime code is responsible for providing the guar-

antees for PALs as described in §4. We further divide the

runtime code into core functionality (including TrustVisor’s

basic NPT-based protection framework, PAL management,

and parameter marshaling), µTPM, RSA libraries, and other

libraries (such as SHA-1 and string functions).

As shown in Table 1, the total size of TrustVisor implemen-

tation is 7889 lines of C and assembly code (the sum of the

debug, initialization, and runtime code). The runtime TCB is

about 6481 lines, which includes 3919 lines of RSA and other

libraries. This is the full extent of the software TCB for Trust-

Visor, which places it within the reach of formal verification

and manual audit techniques.

5http://www.dwheeler.com/sloccount/



Compatibility. As a security hypervisor, TrustVisor vir-

tualizes physical memory using NPTs, configures the DEV

to provide DMA protection for security-sensitive pages, and

intercepts a small set of infrequently-used hardware I/O op-

erations to prevent malicious code from modifying the NPT

and DEV protection mechanisms. TrustVisor can support any

32-bit legacy x86 OS image without any modifications. The

legacy OS and its applications need not be aware of Trust-

Visor unless they would like to take advantage of registering

and executing PALs with TrustVisor’s protections.

6.2 Performance of Legacy Software

TrustVisor only receives control as a result of a hypercall

or trap (recall §5). Thus, when well-behaved legacy code

runs, the performance overhead is exclusively the result of the

hardware virtualization mechanisms, particularly the nested

paging. To evaluate this overhead, we run all the experiments

in Linux on top of TrustVisor without registering any PALs.

OS Microbenchmarks. We use the lmbench suite to mea-

sure the overhead of different OS operations when running

on top of TrustVisor. Figure 6(a) shows the results of 9

important operations in our experiments: null (null system

call), fork, exec, ctxsw (context switch among 16 processes,

each 64 KB in size), mmap, page fault, bcopy (block mem-

ory copy), mmap read (read from a file mapped into a pro-

cess), and socket (local communication by socket). Most of

these benchmarks show less than 6% overhead as a result of

TrustVisor. However, fork, exec and ctxsw do incur higher

performance penalties of 34%, 27% and 15%. This is not

surprising as those operations stress the system’s MMU and

TLB functionality – components which are highly sensitive to

the hardware performance of NPT. We note that these over-

heads are likely to decrease on future platforms as hardware

virtualization support matures.

Application Benchmarks. We execute both compute-bound

and I/O-bound applications with TrustVisor. For compute-

bound applications, we use the SPECint 2006 suite. For I/O-

bound applications, we select a range of benchmarks, includ-

ing building the Linux kernel, Bonnie,6 Postmark [17], net-

perf,7 and unmodified Apache web server performance.

For the kernel build, we compile the Linux kernel 2.6.21

by executing ”make”. For Bonnie, we choose a 1 GB file and

perform sequential read (fread), sequential write (fwrite), and

random access (frandom). For Postmark, we choose 20,000

files, 100,000 transactions, 100 subdirectories, with all other

parameters set to their default values. For netperf, we use

the TrustVisor system as the netperf server, and run both

TCP STREAM and UDP STREAM benchmarks to evaluate

basic network performance. We run the Apache web server

on the TrustVisor system, and use the Apache Benchmark

(ab) included in the Apache distribution to perform 50,000

transactions with 5 concurrent connections.

Our results are presented in Figures 6(b) and 6(c). Most of

the SPEC benchmarks show less than 3% performance over-

6http://www.textuality.com/bonnie/
7http://netperf.org/

(a) Registration hypercall overhead with varying PAL sizes.

Registration Unregistration

4K 16K 32K 64K 4K 16K 32K 64K

31 112 220 435 1.09 1.17 1.44 1.62

(b) Varying PAL input parameter size.

Parameter marshaling

0K 4K 8K 16K 32K

25 92 152 279 536

Table 2: PAL setup overhead microbenchmarks (in µs). Avg.

of 100 runs with negligible variance.

head. However, there are two benchmarks with over 10%,

and two more with 29% and 37% overhead. We attribute this

high overhead to paging operations performed with the cur-

rent hardware’s NPT support, and expect that performance

will improve as NPT hardware matures. For I/O application

benchmarks, sequential access to very large files incurs the

highest overhead – over 20%. We also expect this overhead to

diminish with newer NPT hardware. All of the other bench-

marks show less than 7% overhead.

6.3 Performance of PALs

We present micro- and macro-benchmarks to evaluate sources

of PAL overhead and application-level impact, respectively.

6.3.1 PAL Microbenchmarks

We evaluate the overhead when TrustVisor receives control

in 5 cases (Tables 2 and 3): (a) when an application regis-

ters a PAL, (b) when any function inside the PAL is called,

(c) when a function inside the PAL finishes execution and re-

turns to the application, (d) when an application unregisters a

PAL, and (e) when a PAL calls any µTPM function. We use

microbenchmarks to measure the overhead of the TrustVisor

framework in cases (a) – (d), and the overhead of µTPM op-

erations provided by TrustVisor in case (e). We also evaluate

the performance of real applications to illustrate the overall

performance in a practical environment.

TrustVisor Framework Overhead. TrustVisor’s overhead

has four causes. (1) Each time TrustVisor is invoked, the CPU

must switch from guest mode to host mode, which includes

saving the current guest environment into the VMCB, and

loading the host environment from the VMCB. After Trust-

Visor finishes its task, the CPU will switch back to the guest

by performing the reverse environment saving and loading.

Thus, there will be a noticeable performance impact from

both cache and TLB activity. (2) When TrustVisor sets NPT

protections for PALs or switches between guest legacy mode

and guest secure mode, it will walk the page tables in the

guest, change permissions in the NPTs, and perform some

TLB operations. The bigger the PAL, the more overhead is

incurred. (3) Integrity measurement during registration uses

SHA-1 to hash the PAL pages containing executable code.

(4) Parameter marshaling will incur memory copy overhead

between the untrusted application and PAL.
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Figure 6: Performance impact of TrustVisor compared to native Linux.

Extend Seal UnSeal Quote

Native Linux 24066 358102 1008654 815654

TrustVisor 533 11.7 12.6 21000

Table 3: TPM vs. µTPM microbenchmarks (in µs). Avg. of

100 runs with negligible variance.

Table 2(a) summarizes the overhead of PAL registration,

and Table 2(b) summarizes the overhead of marshaling pa-

rameters during PAL execution. We compare these results

to the same operations performed on native Linux, where

appropriate. We choose four PAL sizes for registration and

unregistration. For PAL execution, we choose five different

parameter sizes. Our results for the one-time cost of regis-

tration show that the performance penalty for a 4 KB PAL

is about 31 µs. With a larger PAL, the overhead increases

by 27 µs per 4 KB page. This is expected because, during

registration, the integrity measurement overhead (cause (3))

outweighs other overheads (causes (1) and (2)). The unreg-

istration overhead is reasonable – less than 1.5 µs, and along

with increasing PAL size, the elapsed time of unregistration

only slightly increases. For PAL execution, the overhead of

switching between guest legacy mode and guest secure mode

is about 25 µs without parameters, and increases by about

65 µs with each 4 KB page of parameters. The switching

overhead increases proportionally to the size of the marshaled

parameters because causes (4) and (2) are more significant

than cause (1). Note that there is no additional performance

penalty when PAL functions run in secure guest mode unless

they invoke µTPM operations.

µTPM Overhead. µTPM functions can only be used by hy-

percalls when the PAL is running in secure guest mode. The

overhead of µTPM functions comes from two places: (1) the

hypercall to switch between the guest and the host, and (2)

the performance of the µTPM function itself. For fair com-

parison with other systems, we distinguish between these two

overheads in our results.

Table 3 summarizes the results for µTPM operations. We

compare all the results to the corresponding operations on na-

tive Linux with Flicker [22], which both depend on the hard-

ware TPM.

HMAC Sign

Avg Stdev Avg Stdev

TrustVisor 0.059 0.003 5.071 0.018

Flicker 62.644 0.181 67.461 0.008

Table 4: HMAC and sign PAL overhead performed using

TrustVisor vs. using Flicker (in ms). Avg. of 100 runs.

6.3.2 PAL Macrobenchmarks

HMAC and Sign. Two simple tasks that require a secret

key are computing message authentication codes (MACs) and

digital signatures. We implemented a routine to compute

a HMAC-SHA-1 over a 1000 byte payload using a 512-bit

key as both a PAL run using TrustVisor and a PAL run us-

ing Flicker. Likewise, we implemented a routine to perform

a digital signature using a 1024-bit RSA key over a 20-byte

hash value as both a PAL run using TrustVisor and a PAL run

using Flicker. Our results are shown in Table 4. TrustVisor

outperforms Flicker by several orders of magnitude for the

HMAC operations, and by more than one order of magnitude

for the sign operations.

OpenSSH. Here we evaluate the overhead induced by

TrustVisor on OpenSSH 4.3p2 as modified for use with

Flicker [22]. We ported the security-sensitive portions to run

in a PAL using µTPM operations. We compare native SSH

performance with Flicker- and TrustVisor-induced overheads,

executing all versions on our Dell PowerEdge T105.

We modified the Flicker-protected code to use the hard-

ware TPM’s Non-Volatile RAM facility for protecting the

sensitive state, instead of the hardware TPM’s Sealed Stor-

age facility. This considerably improves Flicker’s perfor-

mance, as TPM Unseal averages nearly 1 second, whereas

TPM NV Read on our machine executes in 15 ms on average

with negligible variance. However, NV-RAM does impose

scalability issues for Flicker, as there are only a few KB of

NV-RAM available in today’s TPMs [33]. Thus, the perfor-

mance results for our Flicker-based runs should be considered

a best-case for Flicker.

We define Connect-to-Prompt to be the time elapsed be-

tween establishment of the TCP connection and prompting



Native Flicker TV

Connect-to-Prompt 110 1316 1260

Prompt-to-Shell 0 131 11

Table 5: SSH server-side password processing overhead.

Note that both the Flicker and TrustVisor Connect-to-prompt

figures include the time to generate a hardware TPM Quote.

Avg. of 100 runs.

(a) Connect-to-Prompt

Time (ms)

Operation Fli TV

DRTM 14 0

Key Gen 196 199

Seal 15 0

TPM sharing 64 -

(b) Prompt-to-Shell

Time (ms)

Operation Fli TV

DRTM 14 0

Unseal 15 0

Decrypt 4 6

TPM sharing 64 -

Table 6: SSH server side overhead breakdown for each pro-

tected session. The standard deviation on all measurements

is negligible, except key generation at 97 and 107 for Flicker

and TrustVisor, respectively. Avg. of 100 runs.

the client user for their password, and Prompt-to-Shell to

be the time elapsed between password entry and the user

being presented with a shell on the remote system. Ta-

ble 5 compares these overheads between unmodified SSH,

Flicker-protected passwords, and TrustVisor-protected pass-

words. Table 6 presents the relative overheads caused by

Flicker and TrustVisor.

SSL-Enabled Web Server. Here we evaluate the overhead

induced by TrustVisor on a modified SSL-enabled Apache

web server. The goal of this application is to protect the

web server’s long-term private SSL signing key. We build the

web server from source using Apache v2.2.14 and OpenSSL

v0.9.8l after porting the security-sensitive portions to run in

two PALs. To create our PALs, we replaced some of the RSA

operations performed in OpenSSL with equivalent calls to

functions provided by the embedded cryptography library Po-

larSSL8 v0.12.1. We describe the porting process in more de-

tail in §6.4. The first PAL runs when the Apache server starts

and tries to import the long-term private signing key. Instead

of reading the private key from a file, the first PAL generates

the private key and encrypts it using the µTPM sealed storage

operations. The private key is sealed based on the expected

measurement of the second PAL, so that only our second PAL

will be able to unseal it. The second PAL’s responsibility is

to use this private key to sign the appropriate SSL handshake

messages. Thus, the second PAL runs in response to incom-

ing client connections during SSL session establishment.

We run the Apache web server in two modes: single pro-

cess mode, and prefork mode. In prefork mode, the server

creates multiple child processes (not threads) in advance and

assigns incoming client connections to different idle pro-

cesses. In our implementation, the web server needs to reg-

ister the second PAL after it preforks child processes so that

8http://polarssl.org/

Test Concurrent Perf (txns/second)

Scenarios Transactions Vanilla TV Full

Single
1 26.60 24.06 22.96

5 37.91 37.13 34.57

Prefork

5 53.71 53.53 48.49

50 57.84 57.31 51.35

100 58.05 58.03 51.29

200 58.04 58.07 51.08

Table 7: SSL-based web server performance. Results rep-

resent the average number of transactions per second of 10

trials with negligible variance. The Apache Benchmark (ab)

issues 10,000 transactions per trial with the specified num-

ber of concurrent transactions to the server. In each transac-

tion, a 74-byte index page is transferred from the server to the

Apache Benchmark client after an SSL connection is estab-

lished. RSA keys are 1024 bits long.

each child process can have its own instance of the second

PAL, i.e., each child process registers its own PAL. We then

evaluate the performance of our modified Apache web server

using the Apache Benchmark (ab) included in the Apache dis-

tribution to perform HTTPS transactions with varying levels

of transaction concurrency.

Table 7 shows our experimental results. We compare our

web server (denoted Full) with a web server without any

PALs registered and running on the same OS on bare metal

without TrustVisor (Vanilla), and also a web server without

any PALs registered but running on the same OS on top of

TrustVisor (TV).

6.4 Porting Effort

We designed TrustVisor’s registration mechanisms to be min-

imally invasive when porting existing applications to take ad-

vantage of the security properties afforded to PALs. How-

ever, we have not implemented a privilege-separation or

modularity-analysis mechanism. The relative challenge as-

sociated with porting an application to include one or more

PALs is closely related to the level of privilege separation and

modularity existing in the application’s architecture.

Separated Programs. Porting security-sensitive application

modules to TrustVisor is straightforward if the program is al-

ready privilege-separated and modular. Ordinary code will

execute as a PAL, provided that it does not make system calls

to the legacy OS. For workloads such as scientific computa-

tion or cryptography, this requirement is readily met.

Legacy Programs. Programs that were written without at-

tention to privilege separation or modularity can be challeng-

ing to port to include meaningful PALs. We faced the greatest

porting challenge with Apache + OpenSSL. Our original in-

tention was to identify the modules in OpenSSL that manipu-

late the web server’s private SSL key and register them as one

or more PALs. This proved to be difficult due to OpenSSL’s

extensive use of function pointers and adaptability to differ-

ent cryptographic providers, e.g., smart cards. We resorted to

replacing the relevant RSA calls with calls to the embedded

cryptography library PolarSSL.



7 Discussion

We now discuss additional issues, including opportunities for

formal verification of our system and additional applications

that may benefit from its security properties.

7.1 Formal Verification

Datta et al. [10] show that support for DRTM is a viable

means for building a system with code and execution in-

tegrity, and data secrecy and integrity protection. A hardware

DRTM mechanism is the ultimate root of trust for TrustVi-

sor. We then apply these same principles to another layer,

and build a DRTM interface (including the µTPM) on Trust-

Visor for PALs. We plan to build on the results of Datta et al.

to prove the security properties of the TrustVisor design [10].

We also plan to verify the TrustVisor implementation using

software model checking methods [9].

7.2 Applications of Externally Verifiable Execution

Many applications requiring protection of a secret or private

key will benefit from the reduced TCB of operating on that

key exclusively within a PAL protected by TrustVisor. Ex-

amples of such applications include hard drive encryption,

certificate authorities, SSH host or authentication keys, and

private PGP / email signing and decryption keys. With Trust-

Visor protecting the sensitive code region(s), even if the un-

trusted portion of the application is under the control of an at-

tacker, the worst-case malicious act will be invoking the PAL

to sign or decrypt selected messages. The actual value of the

private key will remain secret. Thus, the worst that could

happen is that a PAL may become an encryption or signing

oracle. Even if this attack is successful, it may be possible

to avoid the need to revoke the affected key, which is signif-

icant given the challenges that have long plagued certificate

revocation in practice.

Many enterprises today limit costs by building their sys-

tems from off-the-shelf software components over which they

have little control. Economic pressures make it infeasible for

enterprises to devote significant resources to re-engineering

these components, as they will be at a competitive disadvan-

tage. With TrustVisor, enterprises can develop small software

modules that run as PALs and serve as inline reference mon-

itors [13] or wrappers around third-party software.

7.3 Optimizations / Future Work

We have already identified several optimizations that are not

implemented in our prototype but that will further reduce the

overhead imposed by TrustVisor or increase its applicabil-

ity. The first is multi-processor support, and the second is

support for recursive virtualizability,9 so that TrustVisor does

not monopolize the use of hardware virtualization features.

Finally, there is no need for TrustVisor to run at all in the

absence of registered PALs. TrustVisor should have support

for unloading itself while it is not needed, and re-launching

9VirtualBox (http://virtualbox.org) and Blue Pill (http://

bluepillproject.org/) support this today.

underneath an OS on-demand. Intel’s P-MAPS serves as a

proof-of-concept that this is readily achieved [26].

Additional features that may be valuable for PAL develop-

ment include timeouts and monotonic counters. A timeout is

useful to terminate a PAL that has entered an infinite loop.

The TPM does include limited monotonic counter support,

but per-PAL counters may simplify replay-attack defenses for

µTPM-based sealed storage.

8 Related Work

We focus on work that attempts to perform secure computa-

tion on a host despite the presence of malware.

Intel has recently announced a Processor-Measured Appli-

cation Protection Service called P-MAPS [26]. P-MAPS po-

tentially offers the following features: (1) Isolation of the ap-

plication’s runtime memory from other software on the plat-

form, (2) Encapsulation of the application data memory such

that only code in the measured application pages can access

the data, and (3) Prevention of circumvention of any func-

tion entry-points exposed in the application code. P-MAPS

is claimed to be 2500x smaller than a commodity OS, though

code size numbers are not offered. The P-MAPS hypervi-

sor is claimed to launch underneath a running guest OS in

300 ms. This system is similar to TrustVisor at a high-level;

however, insufficient detail is available to conduct a careful

comparison.

Singaravelu et al. extract the security-sensitive portions of

three applications into AppCores and execute them on the

Nizza microkernel architecture [30]. While compelling, the

trusted kernel contained on the order of 100,000 lines of

code, which is an order of magnitude larger than TrustVisor.

A more recent result is seL4, a formally verified microker-

nel [20]. While this work represents a significant step for-

ward, it remains unclear whether it is appropriate for use in

conjunction with a legacy OS.

Software-based fault isolation [21, 31, 34] and control flow

integrity [1] are mechanisms that insert inline reference mon-

itors. Unfortunately, all of these systems ultimately depend

on the security of the underlying OS remaining intact, and

cannot tolerate a compromise of the system at this low level.

In our system, only TrustVisor is trusted to this extent.

Xen supports virtual TPMs for VMs [4]. Each vTPM in-

stance includes all of Xen, a domain 0 OS, and a software

TPM emulator that implements the full suite of TPM func-

tions in its TCB. Though vTPM exposes more features than

our µTPM, its security properties are difficult to verify today.

In comparison, the TCB for TrustVisor is orders of magnitude

smaller, since we use a minimal hypervisor, a reduced µTPM

interface, and do not include any other code in the TCB.

TrustVisor facilitates attestation of externally verifiable ap-

plication properties in the presence of malware. Other re-

searchers have considered systems for remote attestation [3,

14, 28], but these systems all depend on an unbroken chain

of measurement and trust, starting from boot. In practice,

these measurement chains become so long and contain so



much code that one cannot make any statements regarding

security properties. Researchers have also shown that the

Trusted Computing Group’s Static Root of Trust for Measure-

ment [19, 25] can be readily compromised.

Researchers have developed systems to reduce the requisite

level of trust in OSes (e.g., CHAOS [7], Overshadow [8], and

others [11, 35]). However, the protection granularity in these

systems is too coarse to provide strong security properties,

because the entire application is in the TCB, as is a hypervi-

sor that is larger than TrustVisor. sHype is an extension to

the Xen VMM to enforce coarse-grained Mandatory Access

Control policies between VMs [27], but it still includes the

full Xen hypervisor in the TCB.

Seshadri et al. develop SecVisor, a small hypervisor that

protects kernel code integrity [29]. However, SecVisor cannot

protect against many classes of existing vulnerabilities in the

protected kernel. TrustVisor is also a small hypervisor, but

it sandboxes the legacy OS and provides a trusted environ-

ment in which to execute PALs in isolation from the legacy

OS and its applications, thereby attaining a much smaller

TCB for sensitive code. The protections offered by SecVisor

could also be implemented using TrustVisor as the hypervi-

sor, thereby providing defense-in-depth.

9 Conclusion

TrustVisor is a small hypervisor that enables isolated execu-

tion of Pieces of Application Logic (PAL) with a TCB con-

taining only the TrustVisor runtime and the PAL itself. This

system enforces code and execution integrity, and data se-

crecy and integrity for PALs. TrustVisor enables fine-grained

attestations to the PAL’s execution. TrustVisor supports un-

modified legacy OSes and their applications, so that only

new applications developed with enhanced security proper-

ties require any awareness of TrustVisor. The significant se-

curity benefits of TrustVisor outweigh the performance costs,

which will mostly vanish with improved hardware virtualiza-

tion support. Given TrustVisor’s features, we anticipate that

it can significantly enhance the security of current computing

systems and applications.
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