
Bootstrapping Trust in Commodity Computers

Bryan Parno Jonathan M. McCune Adrian Perrig

CyLab, Carnegie Mellon University

Abstract

Trusting a computer for a security-sensitive task (such as checking

email or banking online) requires the user to know something about

the computer’s state. We examine research on securely capturing a

computer’s state, and consider the utility of this information both for

improving security on the local computer (e.g., to convince the user

that her computer is not infected with malware) and for communi-

cating a remote computer’s state (e.g., to enable the user to check

that a web server will adequately protect her data). Although the

recent “Trusted Computing” initiative has drawn both positive and

negative attention to this area, we consider the older and broader

topic of bootstrapping trust in a computer. We cover issues rang-

ing from the wide collection of secure hardware that can serve as a

foundation for trust, to the usability issues that arise when trying to

convey computer state information to humans. This approach unifies

disparate research efforts and highlights opportunities for additional

work that can guide real-world improvements in computer security.

1 Introduction

Suppose you are presented with two identical computers. One

is running a highly-certified, formally-proven, time-tested

software stack, while the other is running a commodity soft-

ware stack that provides similar features, but may be com-

pletely infested with highly sophisticated malware. How can

you tell which computer is which? How can you tell which

computer you should use to check your email, update your

medical records, or access your bank account?

As businesses and individuals entrust progressively greater

amounts of security-sensitive data to computer platforms, it

becomes increasingly important to inform them whether their

trust is warranted. While the design and validation of secure

software is an interesting study in its own right, we focus this

survey on how trust can be bootstrapped in commodity com-

puters, specifically by conveying information about a com-

puter’s current execution environment to an interested party.

This would, for example, enable a user to verify that her com-

puter is free of malware, or that a remote web server will han-

dle her data responsibly.

To better highlight the research aspects of bootstrap-

ping trust, we organize this survey thematically, rather than

chronologically. Thus, we examine mechanisms for securely

collecting and storing information about the execution envi-

ronment (§2), how to make use of that information locally

(§3), techniques for securely conveying that information to an

external party (§4), and various ways to convert the resulting

information into a meaningful trust decision (§5).

Bootstrapping trust requires some foundational root of

trust, and we review various candidates in §6. We then con-

sider how the process of bootstrapping trust can be validated

(§7) and used in applications (§8). Of course, creating trust

ultimately involves human users, which creates a host of ad-

ditional challenges (§9). Finally, all of the work we survey

has certain fundamental limitations (§10), which leaves many

interesting questions open for future work in this area (§11).

Much of this research falls under the heading of “Trusted

Computing”, the most visible aspect of which is the Trusted

Platform Module (TPM), which has already been deployed

on over 200 million computers [45]. In many ways, this is

one of the most significant changes in hardware-supported

security in commodity systems since the development of seg-

mentation and process rings in the 1960s, and yet it has been

met with muted interest in the security research community,

perhaps due to its perceived association with Digital Rights

Management (DRM) [3]. However, like any other technol-

ogy, the TPM can be used for either savory or unsavory pur-

poses. One goal of this work is to highlight the many ways

(and inspire the study of new ways) in which it can be used

to improve user security without restricting user flexibility.

While Trusted Computing may be the most visible aspect

of this research area, we show that many of the techniques

used by Trusted Computing date back to the 1980s [33].

Hence these ideas extend beyond Trusted Computing’s TPM

to the general concept of bootstrapping trust in commodity

computers. This becomes all the more relevant as cellphones

emerge as the next major computing platform (as of 2005,

the number of cellphones worldwide was about double the

number of personal computers [39, 98]). In fact, many cell-

phones already incorporate stronger hardware support for se-

curity than many desktop computers and use some of the

techniques described in this survey [7, 9]. Indeed, as CPU

transistor counts continue to climb, CPU and computer ven-

dors are increasingly willing to provide hardware support for

secure systems (see, for example, Intel and AMD’s support

for virtualization [2, 47], and Intel’s new AES instructions,

which provide greater efficiency and resistance to side chan-

nels [40]). Thus, research in this area can truly guide the

development of new hardware-supported security features.

Contributions. In this work, we (1) draw attention to the op-

portunities presented by the spread of commodity hardware

support for security, (2) provide a unified presentation of the

reasoning behind and the methods for bootstrapping trust, and

(3) present existing research in a coherent framework, high-

lighting underexamined areas, and hopefully preventing the

reinvention of existing techniques. While we aim to make

this survey accessible to those new to the area, we do not in-

tend to provide a comprehensive tutorial on the various tech-

nologies; instead, we refer the interested reader to the various

references for additional details (see also §12).

2 What Do We Need to Know?

Techniques for Recording Platform State

In deciding whether to trust a platform, it is desirable to learn

about its current state. In this section, we discuss why code

identity is a crucial piece of platform state and how to mea-

sure it (§2.1). We then consider additional dynamic proper-

ties that may be of interest, e.g., whether the running code

respects information-flow control (§2.2). Finally, we argue

that establishing code identity is a more fundamental prop-

erty than establishing any of the other dynamic properties dis-

cussed (§2.3). Unfortunately, the security offered by many of

these techniques is still brittle, as we discuss in §10.

2.1 Recording Code Identity

Why Code Identity? To trust an entity X with her private

data (or with a security-sensitive task), Alice must believe

that at no point in the future will she have cause to regret

having given her data (or entrusted her task) to X . In human

interactions, we often form this belief on the basis of identity

– if you know someone’s identity, you can decide whether to

trust them. However, while user identity suffices for some

tasks (e.g., authorizing physical access), buggy software and

user inexperience makes it difficult for a user to vouch for the

code running on their computer. For example, when Alice

attempts to connect her laptop to the corporate network, the

network can verify (e.g., using a password-based protocol)

that Alice is indeed at the laptop. However, even if Alice

is considered perfectly trustworthy, this does not mean that

Alice’s laptop is free of malware, and hence it may or may

not be safe to allow the laptop to connect.

Thus, to form a belief about a computer’s future behavior,

we need to know more than the identity of its user. One way

to predict a computer’s behavior is to learn its complete cur-

rent state. This state will be a function of the computer’s hard-

ware configuration, as well as the code it has executed. While

hardware configuration might be vouched for via a signed

certificate from the computer’s manufacturer, software state

is more ephemeral, and hence requires us to establish code

identity before we can make a trust decision.

Of course, the question remains: what constitutes code

identity? At present, the state-of-the-art for identifying soft-

ware is to compute a cryptographic hash over the software’s

binary, as well as any inputs, libraries, or configuration files

used. The resulting hash value is often termed a measure-

ment. We discuss some of the difficulties with the interpre-

tation of this type of measurement, as well as approaches to

convert such measurements into higher-level properties, in §5.

What Code Needs To Be Recorded? To bootstrap trust in

a platform, we must, at the very least, record the identity of

the code currently in control of the platform. More subtly, we

also need to record the identity of any code that could have

affected the security of the currently executing code. For ex-

ample, code previously in control of the platform might have

configured the environment such that the currently running

code behaves unexpectedly or maliciously. In the context of

System
(Hardware)

System
(P1, C1)

System
(P2, C2)

Prog P1
Conf C1

Prog P2
Conf C2

M
easu

re

Exe
cu

te

Exe
cu

te

M
easu

re

Secure Boot

(Section 3.1):

Trusted Boot:

L=0
Append:
L←L||m1

Append:
L←L||m2

m1 m2

if m1 ∉ L*:
then ABORT

if m2 ∉ L*:
then ABORT

...
m1 m2

Figure 1: Trusted Boot vs. Secure Boot. The state of a com-

puter system changes as programs run with particular configura-

tions. Trusted boot accumulates a list (L) of measurements for each

program executed, but it does not perform any enforcement. Secure

boot (§3.1) will halt the system if any attempt is made to execute a

program that is not on an approved list (L*). Note that both systems

must always measure programs before executing them. It is also

possible to employ both types of boot simultaneously [33].

the IBM 4758 secure coprocessor [89, 90], Smith analyzes in

greater detail which pieces of code can affect the security of

a given piece of software [87], examining issues such as pre-

viously installed versions of an application that may have had

access to the currently installed application’s secrets.

Who Performs the Measurements? The best time to mea-

sure a piece of software is before it starts to execute. At this

point, it is in a fresh “canonical” form that is likely to be simi-

lar across many platforms [33, 63]. Once it starts executing, it

will generate local state that may vary across platforms, mak-

ing it difficult to evaluate the measurement. Thus, if the soft-

ware currently in control of the platform is Sn, then the logi-

cal entity to measure Sn is the software that was previously in

control of the platform, i.e., Sn−1. In other words, before ex-

ecuting Sn, Sn−1 must contain code to record a measurement

of Sn in its “pristine” state. This logical progression contin-

ues recursively, with each software Si responsible for mea-

suring software Si+1 before giving it control of the platform.

These measurements document the chain of trust [95]; i.e.,

the party interpreting the measurements must trust each piece

of software to have properly measured and recorded subse-

quently launched pieces of software. Of course, this leads to

the question of who (or what) measures the first software (S1)

to execute on the system.

Ultimately, measuring code identity requires a hardware-

based root of trust. After all, if we simply ask the running

code to self-identify, malicious software will lie. As we dis-

cuss in §6, most research in this area uses secure hardware

(e.g., secure coprocessors) for this purpose, but some recent

work considers the use of general-purpose CPUs.

Thus, in a trusted boot (a technique first introduced by

Gasser et al. [33]), a hardware-based root of trust initiates the

chain of trust by measuring the initial BIOS code (see Fig-

ure 1). The BIOS then measures and executes the bootloader,

and the bootloader, in turn, measures and executes the oper-

ating system. Note that a trusted boot does not mean that the

software that has booted is necessarily trustworthy, merely

that it must be trusted if the platform itself is to be trusted.

Attack Type

C
h

a
in

T
y

p
e Privilege Handoff Control

Escalation to Malcode

Hash Record latest value in HW Record latest value in HW

Cert Record latest value in HW Prove access to latest key

Figure 2: Securely Recording Code Measurements. Techniques

for preventing attacks on the measurement record differ based on the

method used to secure the record.

This process of temporal measurement collection can be

extended to include additional information about less privi-

leged code as well (i.e., code that is not in control of the plat-

form). For example, the OS might record measurements of

each application that it executes. On a general-purpose plat-

form, this additional information is crucial to deciding if the

platform is currently in a trustworthy state, since most mod-

ern operating systems do not, by themselves, provide enough

assurance as to the security of the entire system.

On the other hand, if the software in control of the platform

can be trusted to protect itself from, and maintain isolation be-

tween, less privileged code, then it may only need to record

measurements of less privileged code that performs security

sensitive operations. For example, the Terra project [30] ob-

served that a trusted virtual machine monitor (VMM) can im-

plement a trusted boot model both for itself and its virtual ma-

chines (VMs). This approach simplifies measurement, since

the measurement of a single VM image can encompass an

entire software stack. Furthermore, since a VMM is gener-

ally trusted to isolate itself from the VMs (and the VMs from

each other), the VMM need only record measurements for the

VMs that perform security-relevant actions.

Of course, virtualization can also complicate the use of se-

cure hardware, since each VM may want or need exclusive

control of it. The virtual Trusted Platform Module (vTPM)

project [12] investigated how a single physical TPM can be

multiplexed across multiple VMs, providing each with the il-

lusion that it has dedicated access to a TPM.

How Can Measurements Be Secured? Of course, all of

these code identity records must be secured; otherwise, ma-

licious code might erase the record of its presence. This can

happen in one of two ways (see Figure 2). First, in a privilege

escalation attack, less privileged code may find an exploit in

more privileged code, allowing it to access that code’s secrets,

erase the record of the malicious code’s presence, or even cre-

ate fake records of other software. Second, in a handoff at-

tack, trusted software may inadvertently cede control of the

platform to malicious software (e.g., during the boot process,

the bootloader may load a malicious OS) which may attempt

to erase any previously created records. Unfortunately, exist-

ing literature [30, 33, 77] tends to conflate these two types of

attacks, obscuring the relative merits of techniques for secur-

ing measurements. While some research considers the design

of a general-purpose, secure append-only log [79], it tends to

make use of an independent logging server which may not be

readily available in many environments.

CERTIFICATE CHAINS. Initial architecture designs for

recording code identity measurements employed certificate

chains [30, 33]. Before loading a new piece of software,

Gasser et al. require the currently running system to gener-

ate a certificate for the new software [33]. To do so, the cur-

rently running system generates a new keypair for use by the

new software and uses its private key to sign a certificate con-

taining the new public key and a measurement of the new

software. The system then erases its own secrets and loads

the new software, providing the new keypair and certificate

as inputs. As a result, a certificate chain connects the key-

pair held by the currently running software all the way back

to the computer’s hardware. This approach prevents handoff

attacks, since by the time malicious code is loaded, the keys

used to generate the certificate chain have been erased (this is

an important point, often omitted in later work [30]). Thus,

the only keypair the malicious code can both use (in the sense

of knowing the private key) and produce a certificate chain

for, is a keypair that is certified with a certificate containing

the measurement of the malicious code. Thus, by requiring

code to prove knowledge of a certified keypair, a remote en-

tity can ensure that it receives an accurate measurement list.

A certificate chain, on its own, cannot prevent a privi-

lege escalation attack from subverting the measurements. To

maintain the certificate chain, privileged code must keep its

private key available, and hence a privileged-escalated at-

tacker can use that key to rewrite the chain. This attack can be

prevented by recording a hash of the most recent certificate in

a more secure layer, such as secure hardware, though we are

not aware of work suggesting this solution.

HASH CHAINS. Hash chains represent a potentially more ef-

ficient method of recording software measurements. A hash

chain requires only a constant amount of secure memory to

record an arbitrarily long, append-only list of code identi-

ties. As long as the current value of the hash chain is stored

in secure memory, both privilege escalation and handoff at-

tacks can be prevented. This is the approach adopted by the

Trusted Platform Module (TPM) [95]. Several research ef-

forts have applied this approach to the Linux kernel, and de-

veloped techniques to improve its efficiency [63, 77].

For a hardware-backed hash chain, the hardware sets aside

a protected memory register (called a Platform Configuration

Register on the TPM [95]) that is initialized to a known value

(e.g., 0) when the computer first boots. The software deter-

mining a new code module’s identity I uses a hardware API to

extend I into the log. The hardware computes a cryptographic

hash over the the identity record and the current value V of the

register and updates the register with the output of the hash:

V ← Hash(V ||I). The software may keep an additional log

of I in untrusted storage to help with the interpretation of the

register’s value at a future point. As long as Hash is collision-

resistant, the register value V guarantees the integrity of the

append-only log; i.e., even if malicious software gains control

of the platform (via privilege escalation or a control handoff),

it cannot erase its identity from the log without rebooting the

platform and losing control of the machine.

Of course, without secure storage of the current value of

the hash chain, a hash chain cannot protect the integrity of the

log, since once malicious code gains control, it can simply re-

play the earlier extend operations and omit its measurement.

There are no secret keys missing that would impede it.

2.2 Recording Dynamic Properties

While code identity is an important property, it is often in-

sufficient to guarantee security. After all, even though the

system may start in a secure state, external inputs may cause

it to arrive in an insecure state. Thus, before entrusting a com-

puter with sensitive data, it might be useful to know whether

the code has followed its intended control flow (i.e., that it

has not been hijacked by an attack), preserved the integrity

of its data structures (e.g., the stack is still intact), or main-

tained some form of information-flow control. We compare

the merits of these dynamic properties to those of code iden-

tity in §2.3. Below, we discuss two approaches, load-time and

run-time, to capturing these dynamic properties.

The simplest way to capture dynamic properties is to trans-

form the program itself and then record the identity of the

transformed program. For example, the XFI [27] and CFI [1]

techniques transform a code binary by inserting inline refer-

ence monitors that enforce a variety of properties, such as

stack and control-flow integrity. By submitting the trans-

formed binary to the measurement infrastructure described in

§2.1, we record the fact that a program with the appropriate

dynamic property enforcements built-in was loaded and ex-

ecuted. If the transformation is trusted to perform correctly,

then we can extrapolate from the code identity that it also has

the property enforced by the transformation. Of course, this

approach does not protect against attacks that do not tamper

with valid control flows [19]. For example, a buffer overflow

attack might overwrite the isAdministrator variable to

give the attacker unexpected privileges.

Another approach is to load some piece of code that is

trusted to dynamically enforce a given security property on

less-privileged code. An early example of this approach

is “semantic” attestation [43], in which a language runtime

(e.g., the Java or .NET virtual machine) monitors and records

information about the programs it runs. For example, it might

report dynamic information about the class hierarchy or that

the code satisfies a particular security policy. In a similar

spirit, the ReDAS system [57] loads a kernel that has been

instrumented to check certain application data invariants at

each system call. Trust in the kernel and the invariants that it

checks can allow an external party to conclude that the appli-

cations running on the kernel have certain security-relevant

properties. Again, this approach relies on a code identity in-

frastructure to identify that the trusted monitor was loaded.

2.3 Which Property is Necessary?

As discussed above, there are many code properties that are

relevant to security, i.e., things we would like to know about

the code on a computer before entrusting it with a security-

sensitive task. However, since hardware support is expensive,

we must consider what properties are fundamentally needed

(as opposed to merely being more efficient in hardware).

The discussion in §2.2 suggests that many dynamic prop-

erties can be achieved (in some sense) using code identity.

In other words, the identity of the code conveys the dynamic

properties one can expect from it or the properties that one

can expect it to enforce on other pieces of software. However,

the converse does not appear to be true. That is, if a hardware

primitive could report, for example, that the currently running

code respected its intended control flow, then it is not clear

how to use that mechanism to provide code identity. Further-

more, it clearly does not suffice to say anything meaningful

about the security-relevant behavior of the code. A malicious

program may happily follow its intended control-flow as it

conveys the user’s data to an attacker. Similar problems ap-

pear to affect other potential candidates as well. Knowing

that a particular invariant has been maintained, whether it is

stack integrity or information-flow control, is not particularly

useful without knowing more about the context (that is the

code) in which the property is being enforced.

Thus, one can argue that code identity truly is a fundamen-

tal property for providing platform assurance, and thus a wor-

thy candidate for hardware support. Of course, this need not

preclude additional hardware support for monitoring (or en-

forcing) dynamic properties.

3 Can We Use Platform Information Locally?

We now discuss how accumulated platform information (§2)

can benefit a local user. Unfortunately, these measurements

cannot be used to directly provide information to local soft-

ware; i.e., it does not make sense for higher-privileged soft-

ware to use these measurements to convey information to

less-privileged software, since the less-privileged software

must already trust the higher-privileged software.

Nonetheless, in this section, we review techniques for us-

ing these measurements to convince the user that the platform

has booted into a secure state, as well as to provide access

control to a protected storage facility, such that secrets will

only be available to a specific software configuration in the

future. Such techniques tend to focus on preserving the se-

crecy and integrity of secrets, with less emphasis placed on

availability. Indeed, using code identity for access control

can make availability guarantees fragile, since a small change

to the code (made for malicious or legitimate reasons) may

make secret data unavailable.

3.1 Secure Boot

How can a user tell if her computer has booted into a secure

state? One approach is to use a technique first described by

Gasser et al. [33] and later dubbed “secure boot” [5].

In a computer supporting secure boot, each system com-

ponent, starting with the computer’s boot ROM, compares

the measurement of code to be loaded to a list of measure-

ments for authorized software (authorization is typically ex-

pressed via a signature from a trusted authority, which re-

quires the authority’s public key to be embedded in the com-

puter’s firmware) [5, 33]. Secure boot halts the boot process

if there is an attempt to load unauthorized code, and thus as-

sures the user that the platform is in an approved state simply

by booting successfully.

One of the first systems to actually implement these ideas

was AEGIS1 [5]. With AEGIS, before a piece of software is

allowed to execute, its identity is checked against a certificate

from the platform’s owner. The certificate identifies permitted

software. Anything without a certificate will not be executed.

However, a remote party cannot easily determine that a

computer has been configured for secure boot. Even if it can

make this determination, it only learns that the computer has

booted into some authorized state, but it does not learn any

information about what specific state it happens to be in. §4
discusses the techniques needed to provide more information

to a remote party.

3.2 Storage Access Control Based on Code Identity

Applications often require long-term protection of the secrets

that they generate. Practical examples include the keys used

for full disk encryption or email signatures, and a list of stored

passwords for a web browser. Abstractly, we can provide

this protection via an access control mechanism for crypto-

graphic keys, where access policies consist of sets of allowed

platform configurations, represented by the measurement lists

described in §2. Below, we discuss two of the most prominent

protected storage solutions: the IBM 4758 cryptographic co-

processor and the Trusted Platform Module (TPM).

3.2.1 Tamper-Responding Protected Storage

The IBM 4758 family of cryptographic co-processors pro-

vides a rich set of secure storage facilities [24, 52, 89, 90].

First and foremost, it incorporates tamper-responding stor-

age in battery-backed RAM (BBRAM). Additional FLASH

memory is also available, but the contents of FLASH are al-

ways encrypted with keys maintained in BBRAM. Any at-

tempt to physically tamper with the device will result in it

actively erasing secrets. Cryptographic keys that serve as the

root for protected storage can be kept here.

The IBM 4758 enforces storage access restrictions based

on the concept of software privilege layers. Layer 0 is read-

only firmware. Layer 1 is, by default, the IBM-provided

CP/Q++ OS. Layers 2 and 3 are for applications. Each layer

can store secrets either in BBRAM or in FLASH. A hard-

ware ratcheting lock prevents a lower-privilege layer from

accessing the state of a higher-privilege layer. Thus, once

an application loads at layer 2 or 3, the secrets of layer 1 are

unavailable. Extensions to the OS in layer 1 could permit

arbitrarily sophisticated protected storage properties, for ex-

ample mirroring the TPM’s sealed storage facility (discussed

below) of binding secrets to a particular software configura-

tion. The BBRAM is also ideal for storing secure counters,

greatly simplifying defense against state replay attacks.

1Two relevant research efforts have used the name AEGIS. One is that of

Arbaugh et al. [5] discussed in this section. The other is a design for a secure

coprocessor by Suh et al. [93] and is discussed in §6.1.

3.2.2 TPM-based Sealed Storage

Despite providing much less functionality than a full-blown

secure coprocessor, the TPM can also restrict storage ac-

cess based on platform state. It does so by allowing soft-

ware on the platform’s main CPU to seal or bind secrets to a

set of measurements representing some future platform state

(we discuss the differences between these operations below).

Both operations (seal and bind) essentially encrypt the secret

value provided by the software. The TPM will refuse to per-

form a decryption, unless the current values in its Platform

Configuration Registers (PCRs - see §2.1) match those speci-

fied during the seal or bind operation.

Full disk encryption is an example of an application that

benefits from sealed storage. The disk encryption keys can

be sealed to measurements representing the user’s operating

system. Thus, the disk can only be decrypted if the intended

OS kernel has booted. (This is the basic design of Microsoft

BitLocker, discussed in §8.) Connecting disk encryption with

code identity prevents an attacker from modifying the boot

sequence to load malware or an alternate OS kernel (e.g., an

older kernel with known vulnerabilities).

To provide protected storage, both operations use encryp-

tion with 2048-bit asymmetric RSA keys. For greater effi-

ciency, applications typically use a symmetric key for bulk

data encryption and integrity protection, and then use the

TPM to protect the symmetric key. The RSA keys are gener-

ated on the TPM itself,2 and the private portions are never re-

leased in the clear. To save space in the TPM’s protected stor-

age area, the private portions are encrypted using the TPM’s

Storage Root Keypair. The private component of the keypair

resides in the TPM’s non-volatile RAM and never leaves the

safety of the chip.

Sealing Data. With the TPM’s seal operation, the RSA en-

cryption must take place on the TPM. As a result, the TPM

can produce a ciphertext that also includes the current values

of any specified PCRs. When the data is later decrypted, the

exact identity of the software that invoked the original seal

command can be ascertained. This allows an application that

unseals data to determine whether the newly unsealed data

should be trusted. This may be useful, for example, during

software updates.

Because sealing requires the TPM to perform the encryp-

tion, it would be much more efficient to use a symmetric en-

cryption scheme, such as AES. The choice of RSA appears

to have been an attempt to avoid adding additional complex-

ity to the TPM’s implementation, since it already requires an

RSA module for other functionality.

Binding Data. In contrast to sealing, encryption using a pub-

lic binding key need not take place on the TPM. This allows

for greater efficiency and flexibility when performing data en-

cryption, but it means that the resulting ciphertext does not

include a record of the entity that originally invoked the bind

operation, so it cannot be used to assess data integrity.

2The TPM ensures that these keys are only used for encryption operations

(using RSA PKCS #1v2.0 OAEP padding [95]) and never for signing.

Replay Issues. Note that the above-mentioned schemes bind

cryptographic keys to some representation of software iden-

tity (e.g., hashes stored in PCRs). Absent from these primi-

tives is any form of freshness or replay-prevention. The out-

put of a seal or bind operation is ciphertext. Decryption de-

pends on PCR values and an optional 20-byte authorization

value. It does not depend on any kind of counter or version-

ing system. Application developers must take care to account

for versioning of important sealed state, as older ciphertext

blobs can also be decrypted. An example attack scenario is

when a user changes the password to their full disk encryp-

tion system. If the current password is maintained in sealed

storage, and the old password is leaked, certain classes of ad-

versaries may be able to supply an old ciphertext at boot time

and successfully decrypt the disk using the old password. The

TPM includes a basic monotonic counter that can be used to

provide such replay protection. However, the TPM has no

built-in support for combining sealed storage with the mono-

tonic counter. Application developers must shoulder this re-

sponsibility. §8.2 discusses research on enhancing the TPM’s

counter facilities.

4 Can We Use Platform Info. Remotely?

§2 described mechanisms for accumulating measurements of

software state. In this section, we treat the issue of conveying

these measurement chains to an external entity in an authen-

tic manner. We refer to this process as attestation, though

some works use the phrase outbound authentication. We also

discuss privacy concerns and mitigation strategies that arise.

4.1 Prerequisites

The secure boot model (§3.1) does not capture enough in-

formation to securely inform a remote party about the cur-

rent state of a computer, since it (at best), informs the remote

party that the platform booted into some “authorized” state,

but does not capture which state that happens to be, nor which

values were considered during the authorization process.

Instead, a remote party would like to learn about the mea-

surement of the currently executing code, as well as any code

that could have affected the security of this code. §2 describes

how a trusted boot process securely records this information

in measurement chains (using either certificates or hashes).

4.2 Conveying Code Measurement Chains

The high-level goal is to convince a remote party (hereafter:

verifier) that a particular measurement chain represents the

software state of a remote device (hereafter: attestor). Only

with an authentic measurement chain can the verifier make a

trust decision regarding the attestor. A verifier’s trust in an

attestor’s measurement chain builds from a hardware root of

trust (§6). Thus, a prerequisite for attestation is that the veri-

fier (1) understands the hardware configuration of the attestor

and (2) is in possession of an authentic public key bound to

the hardware root of trust.

The attestor’s hardware configuration is likely represented

by a certificate from its manufacturer, e.g., the IBM 4758’s

factory Layer 1 certificate [87], or the TPM’s Endorsement,

Platform, and Conformance Credentials [95]. Attestation-

specific mechanisms for conveying public keys in an authen-

tic way are treated with respect to privacy issues in §4.3. Oth-

erwise, standard mechanisms (such as a Public Key Infras-

tructure) for distributing authentic public keys apply.

The process of actually conveying an authenticated mea-

surement chain varies depending on the hardware root of

trust. We first discuss a more general and more powerful ap-

proach to attestation used on general-purpose secure copro-

cessors such as the IBM 4758 family of devices. Then, given

the prevalence of TPM-equipped platforms today, we discuss

attestation as it applies to the TPM.

4.2.1 General Purpose Coprocessor-based Attestation

Smith discusses the need for coprocessor applications to be

able to authenticate themselves to remote parties [87]. This is

to be distinguished from merely configuring the coprocessor

as desired prior to deployment, or including a signed state-

ment about the configuration. Rather, the code entity itself

should be able to generate and maintain authenticated key

pairs and communicate securely with any party on the inter-

net. Smith details the decision to keep a private key in tamper-

protected memory and have some authority generate certifi-

cates about the corresponding public key. As these coproces-

sors are expensive devices intended for use in high assurance

applications, considerably less attention has been given to the

device identity’s impact on privacy.

Naming code entities on a coprocessor is itself an interest-

ing challenge. For example, an entity may go through one

or more upgrades, and it may depend on lower layer soft-

ware that may also be subject to upgrades. Thus, preserving

desired security properties for code and data (e.g., integrity,

authenticity, and secrecy) may depend not only on the ver-

sions of software currently running on the coprocessor, but

also on past and even future versions. The IBM 4758 exposes

these notions as configurations and epochs, where configura-

tion changes are secret-preserving and epoch changes wipe

all secrets from the device.

During a configuration change, certificate chains incorpo-

rating historical data are maintained. For example, the chain

may contain a certificate stating the version of the lowest

layer software that originally shipped on the device, along

with a certificate for each incremental upgrade. Thus, when a

remote party interacts with one of these devices, all informa-

tion is available about the software and data contained within.

This model is a relative strength of general-purpose cryp-

tographic coprocessors. TPM-based attestations (discussed in

the next section) are based on hash chains accumulated for no

longer than the most recent boot cycle. The history of soft-

ware that has handled a given piece of sensitive data is not

automatically maintained.

Smith examines in detail the design space for attestation,

some of which is specific to the IBM 4758, but much of which

is more generally applicable [87]. A noteworthy contribution

not discussed here is a logic-based analysis of attestation.

4.2.2 TPM-based Attestation

TPM-based attestation affords less flexibility than general

coprocessor-based attestation, since the TPM is not capable

of general-purpose computation. During the attestation pro-

tocol (shown in Figure 3), software on the attestor’s computer

is responsible for relaying information between the remote

verifier and the TPM [95]. The protocol assumes that the at-

testor’s TPM has generated an Attestation Identity Keypair

(AIK), which is an asymmetric keypair whose public compo-

nent must be known to the verifier in advance. We discuss

privacy issues regarding AIKs in §4.3.1.

During the protocol, the verifier supplies the attestor with a

nonce to ensure freshness (i.e., to prevent replay of old attes-

tations). The attestor then asks the TPM to generate a Quote.

The Quote is a digital signature covering the verifier’s nonce

and the current measurement aggregates stored in the TPM’s

Platform Configuration Registers (PCRs). The attestor then

sends both the quote and an accumulated measurement list

to the verifier. This measurement list serves to capture suf-

ficiently detailed metadata about measured entities to enable

the verifier to make sense of them. Exactly what this list con-

tains is implementation-specific. Marchesini et al. focus on

the measurement of a long-term core (e.g., kernel) [63], while

IBM’s Integrity Measurement Architecture contains the hash

and full path to a loaded executable, and recursively mea-

sures all dynamic library dependencies [77]. To check the

accuracy of the measurement list, the verifier computes the

hash aggregate that would have been generated by the mea-

surement list and compares it to the aggregate signed by the

TPM Quote. This verification process involves efficient hash

function computations, so it is more efficient than performing

a public-key based certificate verification for every measure-

ment.

Preventing Reboot Attacks. A naive implementation of the

above attestation protocol is susceptible to a reboot or reset

attack. The basic weakness is a time-of-check to time-of-use

(TOCTOU) vulnerability where the attesting platform is sub-

ject to primitive physical tampering, such as power-cycling

the platform or components therein [91]. For example, the

adversary may wait until the verifier has received an attesta-

tion, then reset the attestor and boot a malicious software im-

age. Mitigating this attack requires a way to bind ephemeral

session keys to the currently executing software [30, 37, 64].

These keys can then be used to establish a trusted tunnel (see

below). A reboot destroys the established tunnel, thereby

breaking the connection and preventing the attack.

Linking Code Identity to Secure Channels. Binding a se-

cure channel (i.e., a channel that provides secrecy, integrity,

and authenticity) to a specific code configuration on a remote

host requires some care. Goldman et al. [37] consider an SSL

client that connects to a server with attestation capabilities.

Even if the client verifies the SSL certificate and the server’s

attestation, there is no linkage between the two. This en-

ables an attack where a compromised SSL server forwards

the client’s attestation request to a different, trusted server.

Attestation Service

Prog P1, Conf C1
Prog P2, Conf C2

...

Meas. List

TPM

PCR 0

PCR N
...

External
Veri!er

Daemon
1. AttRequest

5. QuoteRes, MeasList

2. QuoteRequest

3. QuoteResponse

4. Retrieve
6. Validate Response

Figure 3: Attestation. High-level summary of TPM-based attesta-

tion protocol based on signed hash chain measurements [95], e.g.,

as in IBM’s Integrity Measurement Architecture [77]. Some proto-

col details are elided, e.g., the inclusion of an anti-replay nonce as

part of the AttRequest message.

McCune et al. consider a similar challenge in establishing a

secure channel between a client system and an isolated exe-

cution environment on a server [64]. Both conclude that the

solution is to include a measurement of the public key used

to bootstrap the secure channel in the attestation, e.g., extend

the public key into one of the TPM’s PCRs. Goldman et al.

also discuss other more efficient solutions in the context of a

virtualized environment.

4.3 Privacy Concerns

Participating in an attestation protocol conveys to the verifier

detailed information about the software loaded for execution

on a particular platform. Furthermore, the attestation often

depends on a cryptographic key embedded in the secure hard-

ware, and using the same key in multiple attestations allows

those attestations to be linked together.

In some cases, this may not be a privacy concern. For ex-

ample, in the military and in many enterprises, precise plat-

form identification is desirable, and users do not have an ex-

pectation of privacy. As a result, some of the more expensive

cryptographic co-processors that target these environments

contain little provision for privacy.

However, in consumer-oriented applications, privacy is vi-

tal, and hence several techniques have been developed to

maintain user privacy while still providing the ability to se-

curely bootstrap trust.

4.3.1 Identity Certificate Authorities

One way to enhance user privacy is to employ a trusted

third party to manage the relationship between a platform’s

true unique identity, and one or more pseudonyms that can

be employed to generate attestations for different purposes.

The Trusted Computing Group initially adopted this approach

in the TPM [95], dubbing the trusted third party a Privacy

CA and associating the pseudonyms with Attestation Identity

Keypairs (AIKs). A TPM’s true unique identity is represented

by the Endorsement Keypair (EK) embedded in the TPM.3

3It is possible to clear a TPM’s EK and generate a new one. However,

once an EK is cleared, it cannot be reinstated (the private key is lost). Further,

high-quality TPMs ship from the manufacturer with a certified EK. Without

a certified EK, it is difficult for a Privacy CA to make a trust decision about a

particular TPM. Generating one’s own EK is most appropriate for security-

aware enterprises with procedures in place to generate new EKs in physically

At a high-level, the trusted third party validates the cor-

rectness of the user’s secure hardware, and then issues a cer-

tificate declaring the user’s pseudonym corresponds to legit-

imate secure hardware. With the TPM, the user can ask the

TPM to generate an arbitrary number of AIKs. Using the

TPM’s EK, the user can convince the Privacy CA to issue a

certificate for the public portion of an AIK, certifying that the

private portion of the AIK is known only to a real, standards-

compliant TPM. Of course, for many applications, it will be

necessary to use a consistent pseudonym for that particular

application (e.g., online banking).

The Privacy CA architecture described above has met with

some real-world challenges. In reality, there is no one cen-

tral authority trusted by all or even most users. Furthermore,

a Privacy CA must be highly secure while also maintaining

high availability, a nontrivial undertaking. To date, no com-

mercial Privacy CAs are in operation, though a handful of

experimental services have been created for research and de-

velopement purposes [28].

4.3.2 Direct Anonymous Attestation

To address the limitations of Privacy CAs, a replacement pro-

tocol called Direct Anonymous Attestation (DAA) [13] was

developed and incorporated into the latest TPM specifica-

tion [95]. DAA is completely decentralized and achieves

anonymity by combining research on group signatures and

credential systems. Unlike many group signatures, it does

not include a privileged group manager, so anonymity can

never be revoked. However, it does allow membership to be

revoked. In other words, an adversary’s credentials can be

invalidated without the system ever actually learning the ad-

versary’s identity.

With DAA, a TPM equipped platform can convince an Is-

suer that it possesses a legitimate TPM and obtain a mem-

bership certificate certifying this fact. However, the interac-

tion with the Issuer is performed via zero-knowledge proofs,

so that even if the Issuer colludes with a verifier, the user’s

anonymity is protected. DAA also allows a user to select any

desired level of privacy by employing an arbitrarily large set

of pseudonyms.

In practice, however, no currently available hardware

TPMs offer DAA support, due in part to the cost of imple-

menting expensive group signature operations on the limited

TPM processor. The DAA algorithm is also quite complex,

since it offloads as much computation as possible to the sys-

tem’s (relatively) untrusted primary CPU.

Rudolph noted some weaknesses in the original DAA de-

sign that could undermine its anonymity properties [73], pri-

marily by having the Issuer employ different long-term keys

for different users. Several fixes have been proposed [60], but

these attacks highlight the ability of implementation “details”

to undermine the security of formally proven systems.

controlled environments, or for highly security-conscious individuals.

5 How Do We Make Sense of Platform State?

Knowing what code is executing on a platform does not

necessarily translate into knowing whether that code can be

trusted. In this section, we elaborate on this problem (5.1) and

then review solutions that fall into two broad categories: so-

lutions that provide only the identity of security-relevant code

(5.2), and those that convey higher-level information (5.3).

5.1 Coping With Information Overload

At a high-level, converting code identity into security proper-

ties is simply an exercise in software engineering. If we build

perfectly secure software, then knowing that this bulletproof

code is running on a computer suffices to assure us that the

computer can be trusted. Unfortunately, developing software

with strong security properties, even minimal security ker-

nels with limited functionality, has proven to be a daunting

and labor-intensive task [36, 54, 58, 92].

As a result, most computers run a large collection of

buggy, unverified code. Worse, both OS and application

code changes rapidly over time, making it difficult to de-

cide whether a particular version of software, combined with

dozens of other applications, libraries, drivers, etc., really

constitutes a secure system.

Below, we examine techniques that have been developed to

cope with this state-space explosion.

5.2 Focusing on Security-Relevant Code

One way to simplify the decision as to whether a computer

is trustworthy is to only record the identity of code that

will impact the computer’s security. Reducing the amount

of security-relevant code also simplifies the verifier’s work-

load in interpreting an attestation. To achieve this reduction,

the platform must support multiple privilege layers, and the

more-privileged code must be able to enforce isolation be-

tween itself and less-privileged code modules. Without isola-

tion, privilege-escalation attacks (recall §2.1) become possi-

ble, enabling malicious code to potentially erase its tracks.

While layering is a time-honored technique for improving

security and managing complexity [36, 54], we focus on the

use of layering to simplify or interpret information given to

an external party about the state of the system.

Privilege Layering. Marchesini et al. introduce a system [63]

that uses privilege layering to simplify measurement infor-

mation. It mixes the trusted boot and secure boot processes

described in §2.1 and §3.1. The platform records the launch

of a long-term core (an SELinux kernel in their implemen-

tation) which loads and verifies a policy file supplied by an

administrator. The long-term core contains an Enforcer mod-

ule that ensures that only applications matching the policy are

allowed to execute. Thus, application execution follows the

secure boot model. Secrets are bound to the long-term core,

rather than specific applications, using trusted boot measure-

ments as described in §3.2. If an external party can be con-

vinced via remote attestation that the long-term core is trust-

worthy, then the only additional workload is to verify that the

Enforcer is configured with an appropriate policy.

Virtualization. The model of attesting first to a more-

privileged and presumably trustworthy core, and then to only

a portion of the environment running thereupon, has been ex-

plored in great detail in the context of virtualization.

One of the early designs in this space was Microsoft’s

Next-Generation Secure Computing Base (NGSCB) [26].

With NGSCB, security-sensitive operations are confined to

one virtual machine (VM), while another VM can be used for

general-purpose computing. The VMM is trusted to provide

strong isolation between virtual machines (VMs), and hence

an external party need only learn about the identity of the

VMM and a particular VM, rather than all of the code that

has executed in the other VMs. Specifically, handoff attacks

(§2.1) are significant only prior to the VMM itself launching,

and within the VM where an application of interest resides.

Handoff attacks in other VMs are irrelevant. The challenge

remains to this day, however, to construct a VMM where

privilege-escalation attacks are not a serious concern.

Recording the initial VM image also provides a simple way

of summarizing an entire software stack. With the advent of

“virtual appliances,” e.g., a dedicated banking VM provided

by one’s bank, this model can be quite promising. Terra gen-

eralized this approach to allow multiple “open”, unrestricted

VMs to run alongside “closed” or proprietary VMs [30].

sHype, from IBM, enforces mandatory access control (MAC)

policies at the granularity of entire virtual machines [76].

Late Launch. A further challenge is that even VMM-based

solutions include a considerable amount of non-security-

relevant code, e.g., the BIOS, the boot loader, and various

option ROMs. These values differ significantly across plat-

forms, making it difficult for the recipient to assess the secu-

rity of a particular software stack. Additionally, these enti-

ties are more privileged than the VMM (since they run before

the VMM at the highest possible privilege level) and may be

capable of undermining the VMM’s ability to subsequently

instantiate strong isolation between VMs.

To address these shortcomings, AMD and Intel extended

the x86 instruction set to support a late launch operation with

their respective Secure Virtual Machine (SVM) and Trusted

eXecution Technology (TXT) initiatives [2, 47]. A late

launch operation essentially resets the platform to a known

state, atomically measures a piece of code, and begins exe-

cuting the code in a hardware-protected environment.

As the OSLO bootloader project noted [55], a late launch

allows the chain of trust described in §2.1 to be signifi-

cantly shortened. One promising design is to late launch a

VMM, thereby eliminating the possibility of malicious plat-

form firmware attacking the VMM.

BIND [84] combined the late launch with secure informa-

tion about the late-launched code’s inputs and outputs, hence

providing a more dynamic picture to a remote party. Since it

predated the arrival of actual late launch hardware, it neces-

sarily lacked an implementation.

The Flicker project found this approach could be extended

even further [64] to provide a secure execution environment

on demand. It combined late launch with sealed storage (see

§3.2) and a carefully engineered kernel module to allow the

currently executing environment to be temporarily paused

while a measured and isolated piece of code ran. Once com-

pleted, the previous environment could be resumed and run

with full access to the platform’s hardware (and hence perfor-

mance). This reduced the code identity conveyed to a third

party to a tiny Flicker-supplied shim (reported to be as little

as 250 lines of code) and the security-relevant code executed

with Flicker protections. However, the authors found that

since the late launch primitive had not been designed to sup-

port frequent or rapid invocation, it introduced context-switch

overheads on the order of tens or hundreds of milliseconds for

practical security-sensitive code.

5.3 Conveying Higher-Level Information

An orthogonal approach to interpreting code identity is to

convert the information into a set of higher-level properties

that facilitate trust judgements. This is typically accom-

plished either via code-level constraints or by outsourcing the

problem to a third-party.

Code Constraints. As discussed in §2.2, multiple research

efforts have studied mechanisms for applying static (e.g., via

type checking [53] or inline reference monitors [27]) or dy-

namic (e.g., via hypervisors [80] or security kernels [57])

methods for conveying information about software. Attest-

ing to code identity allows an external party to verify that the

running code has been appropriately transformed or that the

dynamic checker was loaded correctly. This in turn assures

the external party that the code has the property (or proper-

ties) provided by the transformation or checker.

A related technique for providing higher-level informa-

tion is to attest to a low-level policy enforcement mecha-

nism and the policy that is being enforced. Jaeger et al.

propose a policy-reduced integrity measurement architecture

(PRIMA) [50] that enforces an integrity policy called Clark

Wilson-Lite (CW-Lite) [83]. CW-Lite relaxes the original

Clark-Wilson [21] requirements that complete, formal assur-

ance of programs is required, and that all interfaces must have

filters. Instead, only interfaces accepting low-integrity inputs

must have filters. PRIMA supports the notion of trusted and

untrusted subjects, and extends IBM’s IMA [77] to also mea-

sure the Mandatory Access Control (MAC) policy, the set of

trusted subjects, and the code-subject mapping (e.g., the ac-

tive user or role when a program is run). Verification of an

attestation produced on a PRIMA-capable system involves

additional checks. Verification fails if any of the following

occur: (1) an untrusted program executes, or (2) a low in-

tegrity flow enters a trusted program without first being fil-

tered. PRIMA is prototyped using SELinux.

Outsourcing. Another approach is to outsource the prob-

lem of interpreting code identity to a third party. Terra [30]

took an initial step in this direction, as the authors suggest

that clients obtain certificates from their software providers

that map hash values to software names and/or versions. By

including these certificates with their attestation, the client

simplifies the verifier’s interpretation task (i.e., the verifier no

longer needs to have its own database for mapping hash val-

ues to software packages, assuming the verifier trusts the PKI

used by the software vendors). Subsequent work takes this

idea much further [43, 75]. The client contacts a third-party

who certifies that the client’s software satisfies a much higher-

level property, e.g., the client’s software will never leak sen-

sitive data. The client then presents this certificate to the veri-

fier. Assuming the verifier trusts this third-party, it can easily

conclude that the client possesses the certified property. Un-

fortunately, most work in this area does not specify how the

third party decides whether a particular piece of software pro-

vides a given property.

6 Roots of Trust

Trust in any system needs a foundation or a root of trust.

Here, we discuss the roots of trust that have been proposed or

deployed. Typically, the root of trust is based on the secrecy

of a private key that is embedded in hardware; the correspond-

ing public key is certified by the hardware’s manufacturer. As

we discuss, some systems further rely on a piece of code that

must execute in the early boot process for their root of trust.

We also discuss schemes where the root of trust is established

by the properties of the physical hardware itself.

We divide this section as follows: 1) general-purpose

devices with significant resistance to physical tampering,

2) general-purpose devices without significant physical de-

fenses, 3) special-purpose minimal devices, and 4) research

solutions that attempt to instantiate a root of trust without cus-

tom hardware support.

6.1 General-Purpose Tamper-Resistant and

Tamper-Responding Devices

We first discuss commercial solutions available today. Rel-

atively few products have achieved widespread commercial

success, since tamper-resistant devices require costly manu-

facturing processes. We then discuss research projects that

developed many of the design ideas manifested in today’s

commercial solutions. In all of these systems, the hardware

stores a secret private key, and the manufacturer digitally

signs a certificate of the corresponding public key. The cer-

tificate forms the root of trust that a verifier uses to establish

trust in the platform.

6.1.1 Commercial Solutions

IBM offers a family of general-purpose cryptographic

co-processors with tamper-resistant and tamper-responding

properties, including the PCI-based 4758 [52, 89, 90] and

the PCI-X-based 4764/PCIXCC [8, 46]. These devices in-

clude packaging for resisting and responding to physical pen-

etration and fluctuations in power and temperature. Batter-

ies provide power that enables an active response to detected

tampering, in the form of immediate erasure of the area where

internal secrets are stored and permanently disabling the de-

vice. Some of these devices include support for online battery

replacement, so that the lifetime of these devices is not con-

strained by the lifetime of a battery.

Smart cards are also widely deployed. A private key, typi-

cally used for authentication, resides solely in the smart card,

and all private key operations take place within the card itself.

In this way the cards can be used to interact with potentially

untrusted terminals without risking key exposure. Gobioff et

al. discuss the need for an on-card trusted path to the user,

since an untrusted terminal can display one thing to the user

and perform a different transaction with the card itself (e.g.,

doubling the amount of a transaction) [35]. Smart cards are

also discussed in §9.

6.1.2 Research Projects

µABYSS [99] and Citadel [100] are predecessors of the mod-

ern IBM designs, placing a CPU, DRAM, FLASH ROM, and

battery-backed RAM (BBRAM) within a physically tamper-

resistant package. Tampering causes erasure of the BBRAM,

consequently destroying the keys required to decrypt the con-

tents of DRAM. The Dyad secure co-processor [102] also

presents some design elements visible today in IBM’s de-

vices. Only signed code from a trusted entity will be ex-

ecuted, and bootstrapping proceeds in stages. Each stage

checks its integrity by comparing against a signature stored

in the device’s protected non-volatile memory.

The XOM [62] and AEGIS4 [93] designs do not trust the

operating system, and include native support for partitioning

cache and memory between mutually distrusting programs.

The AEGIS [93] design generates secrets (for use as encryp-

tion keys) based on the physical properties of the CPU it-

self (e.g., logic delays). Physical tampering will impact these

properties, rendering the encryption keys inaccessible.

The Cerium processor design is an attempt at provid-

ing similar properties while remaining a largely open sys-

tem [17]. Cerium relies on a physically tamper-resistant CPU

with a built-in private key. This key is then used to encrypt

sensitive data before it is sent to memory. Cerium depends

on a trusted micro-kernel to manage address space separation

between mutually distrusting processes, and to manage en-

cryption of sensitive data while it resides in untrusted DRAM.

Lee et al. propose the Secret Protected (SP) architecture

for virtual secure coprocessing [59]. SP proposes hard-

ware additions to standard CPUs in the form of a small

key store, encryption capabilities at the cache-memory in-

terface, new instructions, and platform changes to support a

minimalistic trusted path. These facilities enable a Trusted

Software Module to execute with direct hardware protection

on the platform’s primary CPU. This module can provide

security-relevant services to the rest of the system (e.g., emu-

late a TPM’s functionality), or it can implement application-

specific functionality. Data is encrypted and integrity pro-

tected when it leaves the CPU for main memory, with the

necessary keys residing solely within the CPU itself. SP pays

considerable attention to the performance as well as security

characteristics of the resulting design.

4Two relevant research efforts have used the name AEGIS. One is that of

Arbaugh et al. [5] discussed in §2.1. The other is by Suh et al. [93] and is

discussed in this section.

6.2 General-Purpose Devices Without Dedicated

Physical Defenses

Here we discuss devices that are designed to help increase

the security of software systems, but do not incorporate ex-

plicit physical defense measures. In practice, the degree of

resilience to physical compromise varies widely. For exam-

ple, consider the differences in physically attacking a device

1) on a daughter card that can be readily unplugged and in-

terposed on, 2) soldered to the motherboard, 3) integrated

with the “super-IO” chip, and 4) on the same silicon as the

main CPU cores. The best examples for commodity plat-

forms today are those equipped with a Trusted Platform Mod-

ule (TPM), its mobile counterpart, the Mobile Trusted Mod-

ule (MTM [25, 96]), or a smart card.

TPM-equipped Platforms. Trust in the TPM stems from

three roots of trust, specifically the roots of trust for Storage,

Reporting, and Measurement. Trusted storage is provided by

an encryption key that permanently resides within the TPM

in non-volatile RAM (see §3.2.2). The root for reporting (or

communicating measurements to an external party) can be

protected by the TPM’s storage facilities. Finally, TPM mea-

surement depends an immutable part of platform firmware

called the Core Root of Trust for Measurement, which initial-

izes the TPM when a platform first boots up.

MTM-equipped Platforms. For space reasons, we consider

here only one profile from the MTM specification [96], that

of the Remote Owner MTM. Trust stems from four distinct

roots of trust, specifically the roots of trust for Storage, En-

forcement, Reporting, and Verification. These roots of trust

represent security preconditions required for the MTM to ini-

tialize successfully [25]. Unlike the TPM, an MTM may be

implemented entirely in software, although a device secret

must be protected so that it can be used to provide secure

storage facilities. Similar to the TPM, the other roots can use

keys that are protected by secure storage. The root for exe-

cution typically makes use of the isolated execution features

of the platform’s main CPU, e.g., ARM TrustZone [7] or TI

M-Shield [9]. Boot integrity is provided using a secure boot

model (§3.1).

Smart Cards. Smart cards and SIM cards do not have any

active tamper response mechanisms; instead, they attempt to

protect a secret key through techniques such as hardware ob-

fuscation [103]. Private key operations are performed within

the card to protect the card’s secrets from being exposed to

untrusted terminals.

6.3 Special-Purpose Minimal Devices

Several research projects have considered the utility of

special-purpose security hardware. In general, this minimal-

istic approach works for some applications, but the limited

functionality will exclude many applications that depend on

reporting exactly what code is currently executing. Charac-

terizing more precisely what functionality is needed in secure

hardware for various classes of applications is still an open

area of research.

Chun et al. observe that much of the complexity in

Byzantine-Fault-Tolerant protocols arises from an adver-

sary’s ability to lie differently to each legitimate partici-

pant [20]. They show that the ability to attest to an append-

only log can prevent such duplicity, and hence greatly reduces

the complexity and overhead of these protocols. Following up

on this work, Levin et al. [61] show that the same property can

be achieved with a much simpler primitive, namely the ability

to attest to the value of a counter. They informally argue that

this is simplest primitive that can provide this property, and

they show that an attested counter can be used in a range of

applications, including PeerReview and BitTorrent.

6.4 Research Solutions – No Hardware Support

The research community has proposed mechanisms to estab-

lish a root of trust based solely on the properties of the physi-

cal hardware, i.e., without special hardware support. The key

idea in software-based attestation is to have code compute a

checksum over itself to verify its integrity [23, 34, 56, 81, 82].

The verifier checks the result of the checksum and also mea-

sures the time taken to compute it. If an adversary attempts

to interfere with the checksum computation, the interference

will slow the computation, and this timing deviation can be

detected by the verifier. Software-based attestation requires

a number of strong assumptions, including the need for the

verifier to have intimate knowledge of the hardware platform

being verified, i.e., the verifier must know the platform’s CPU

make and model, clock speed, cache architecture, etc. In

comparison with hardware-based techniques, the resulting se-

curity properties are similar to those of a late launch on a

platform such as AMD SVM [2] or Intel TXT [47] (see §5.2).

Secure storage remains a challenge as we discuss below.

The earliest proposal is due to Spinellis [23], who proposes

to use a timed self-checksumming code to establish a root of

trust on a system. In the same vein, Kennel and Jamieson

propose to use hardware side-effects to authenticate soft-

ware [56]. Seshadri et al. implement a timed checksum func-

tion on embedded systems as well as on PCs [81, 82]. Giffin

et al. propose the use of self-modifying code to strengthen

self-checksumming [34].

Attacks have recently been proposed against weakened

versions of software-based attestation mechanisms [15, 101];

however, these attacks are primarily based on implementation

flaws, rather than fundamental limitations of the approach.

Nonetheless, additional formalism is needed to create true

confidence in software-based attestation.

Long-term secure storage is also an open challenge for

software-based attestation. This is because software-based at-

testation has no dedicated or hardware-protected storage for

integrity measurements or secrets bound to integrity measure-

ments. Thus, if such properties are desired, they must be en-

gineered in software. However, there are fundamental limita-

tions to the types of storage that can be protected long-term

(e.g., across a power cycle) without a root of trust for storage

(e.g., an encryption key available only to the trusted code that

runs as part of the software-based attestation).

7 Validating the Process

Bootstrapping trust can only be effective if we can vali-

date the hardware and protocols involved. From a hardware

perspective, Smith and Austel discuss efforts to apply for-

mal methods to the design of secure coprocessors [85, 89].

They also state formal security goals for such processors.

Bruschi et al. use a model checker to find a replay attack

in the TPM’s Object Independent Authorization Protocol

(OIAP) [14]. They also propose a countermeasure to address

their attack, though it requires a TPM design change.

Taking a more empirical approach, Chen and Ryan iden-

tify an opportunity to perform an offline dictionary attack

on weak TPM authorization data, and propose fixes [18].

Sadeghi et al. performed extensive testing on TPMs from

multiple vendors to evaluate their compliance with the spec-

ification [74]. They find a variety of violations and bugs,

including some that impact security. Finally, starting from

the TPM specification, Gürgens et al. developed a formal

automata-based model of the TPM [42]. Using an automated

verification tool, they identify several inconsistencies and po-

tential security problems.

At the protocol layer, Smith defines a logic for reason-

ing about the information that must be included in platform

measurements to allow a verifier to draw meaningful con-

clusions [87]. Datta et al. use the Logic of Secure Systems

(LS2) [22] to formally define and prove the code integrity

and execution integrity properties of the static and dynamic

TPM-based attestation protocols. The logic also helps make

explicit the invariants and assumptions required for the secu-

rity of the protocols.

8 Applications

Clearly, many applications benefit from the ability to boot-

strap trust in a computer. Rather than give an exhaustive list,

we focus on applications deployed in the real world, and a

handful of particularly innovative projects in academia.

8.1 Real World

Code Access Security in Microsoft .NET. Microsoft’s Code

Access Security is intended to prevent unauthorized code

from performing privileged actions [67]. The Microsoft .NET

Common Language Runtime (CLR) maintains evidence for

assemblies of code and uses these to determine compliance

with a security policy. One form of evidence is the crypto-

graphic hash of the code in question. This represents one

of the more widely deployed systems that supports making

security-relevant decisions based purely on the identity of

code as represented by a cryptographic hash of that code.

Bitlocker. One of the most widely-used applications of trust

bootstrapping is BitLocker [68], Microsoft’s drive encryption

feature, which first appeared in the Windows Vista OS. In-

deed, BitLocker’s dependence on the presence of a v1.2 TPM

likely helped encourage the adoption of TPMs into the com-

modity PC market. The keys used to encrypt and authenticate

the harddrive’s contents are sealed (see §3.2) to measurements

taken during the computer’s initial boot sequence. This en-

sures that malware such as boot-sector viruses and rootkits

cannot hijack the launch of the OS nor access the user’s files.

These protections can be supplemented with a user-supplied

PIN and/or a secret key stored on a USB drive.

Trusted Network Connect (TNC). TNC is a working group

with goals including strengthening network endpoints. TNC

supports the use of attestation to perform Network Access

Control. Thus, before a computer can connect to the network,

it must pass integrity checks on its software stack, as well

as perform standard user authentication checks. An explicit

goal is to give non-compliant computer systems an avenue

for remediation. Existing open source solutions have already

been tested for interoperability with promising results [97].

Secure Boot on Mobile Phones. Mobile phones (and other

embedded devices) have long benefitted from a secure boot

architecture. Until recently, these devices served very spe-

cific purposes, and the degree of control afforded to mobile

network operators by a secure boot architecture helped to

ensure dependable service and minimize fraud. Even many

modern smartphones with support for general-purpose ap-

plications employ rich capability-based secure architectures

whose properties stem from secure boot. For example, Sym-

bian Signed [25] is the interface to getting applications signed

such that they can be installed and access certain capabilities

on smartphones running the Symbian OS. Apple’s iPhone OS

employs a similar design.

8.2 Research Proposals

Multiple projects have considered using secure hardware to

bootstrap trust in a traditional “Trusted Third Party”. Exam-

ples include certifying the behavior of the auctioneer in an

online auction [72], protecting the private key of a Certificate

Authority [64], protecting the various private keys for a Ker-

beros Distribution Center [48].

Given the ever increasing importance of web-based ser-

vices, multiple research efforts have studied how to bootstrap

greater assurance in public web servers. In the WebALPS

project, building on the IBM 4758, Jiang et al. enhanced an

SSL server to provide greater security assurance to a web

client [51, 86]. A “guardian” program running on the se-

cure coprocessor provides data authenticity and secrecy, as

well as safeguarding the server’s private SSL keys. This ap-

proach helps protect both the web client and the web server’s

operator from insider attacks. In the Spork project, Moyer et

al. consider the techniques needed to scale TPM-based attes-

tation to support a high-performance web server [70]. They

also implement their design by modifying the Apache web

server to provide attested content and developing a Firefox

extension for validating the attestations.

Of course, other network protocols can benefit from boot-

strapped trust as well. For example, the Flicker project en-

hanced the security of SSH passwords while they are handled

by the server [64]. With a Flicker-enhanced SSH server, the

client verifies an attestation that allows it to establish a secure

channel to an isolated code module on the server. By sub-

mitting its password over this channel, the client can ensure

that only a tiny piece of code on the server will ever see the

password, even if other malware has infected the server. On a

related note, the BIND project [84] observed that by binding

bootstrapped code to its inputs, they could achieve a transi-

tive trust property. For example, in the context of BGP, each

router can verify that the previous router in the BGP path ex-

ecuted the correct code, made the correct decisions given its

input, and verified the same information about the router be-

fore it. The last property ensures that by verifying only the

previous router in the chain, the current router gains assur-

ance about the entire BGP path.

Researchers have also investigated the use of bootstrapped

trust in the network itself. Garfinkel et al. noted that se-

cure hardware might help defend against network-based at-

tacks [31]. However, the first design and implementation

of this idea came from Baek and Smith, who describe an

architecture for prioritizing traffic from privileged applica-

tions [10]. Using a TPM, clients attest to the use of an

SELinux kernel equipped with a module that attaches Diff-

serv labels to outbound packets based on an administrator’s

network policy. Gummadi et al. propose the Not-A-Bot sys-

tem [41], which tries to distinguish human-generated traffic

from bot-driven traffic. They attest to a small client module

that tags outgoing packets generated within one second of a

keystroke or mouse click. Through trace-driven experiments,

the authors show that the system can significantly reduce ma-

licious traffic.

Finally, Sarmenta et al. observe that a trusted monotonic

counter can be used in a wide variety of applications, includ-

ing count-limited objects (e.g., keys that can only be used

a fixed number of times), digital cash, and replay preven-

tion [78]. While the TPM includes monotonic counter func-

tionality, the specification only requires it to support a max-

imum of four counters, and only one such counter need be

usable during a particular boot cycle. Thus, they show how

to use a log-based scheme to support an arbitrary number

of simultaneous counters. They also design a more efficient

scheme based on Merkle trees [66], but this scheme would re-

quire modifications to the TPM, so that it could securely store

the tree’s root and validate updates to it.

9 Human Factors & Usability

Most existing work in attestation and trusted computing fo-

cuses on interactions between two computing devices. This

section treats a higher goal – that of convincing the human

operator of a computer that it is in a trustworthy state. These

solutions sort into two categories: those where the user is

in possession of an additional trustworthy device, and those

based solely on the human’s sensory and cognitive abilities.

9.1 Trustworthy Verifier Device

To help a human establish trust in a computer, Itoi et al.

describe a smart card-based solution called sAEGIS [49].

sAEGIS builds on the AEGIS [5] secure boot (see §3.1) but

changes the source of the trusted software list. Instead of be-

ing preconfigured by a potentially untrustworthy administra-

tor, sAEGIS allows the smart card to serve as the repository

of trusted software list. Thus, a user can insert her smart card

into an untrusted computer and reboot. If booting is success-

ful, the resulting environment conforms to the policy encoded

on her smart card, i.e., the executing software appears in the

list stored in the smart card. Of course, the user must estab-

lish through some out-of-band mechanism that the computer

indeed employs the sAEGIS system. Otherwise, it might sim-

ply ignore the user’s smart card.

To help humans verify that a platform is trustworthy, Lee

et al. propose the addition of a simple multi-color LED and

button to computers to enable interaction with a Trusted Soft-

ware Module [59]. A complete architecture and implementa-

tion for these simple interfaces remains an open problem.

The Bumpy [65] system is an architecture to provide a

trusted path for sending input to web pages from a potentially

malicious client-side host. A user is assumed to possess a

trustworthy smartphone and an encryption-capable keyboard.

Attestation is used to convince the smartphone that the user’s

input is being encrypted in an isolated code module.

Parno considers the challenges faced by a human user try-

ing to learn the identity (e.g., authentic public key) of the

TPM in the specific computer in front of her [71]. He high-

lights the risk of a Cuckoo Attack, in which malware on

the user’s computer forwards the user’s attestation request to

another attacker-controlled system that conforms to the ex-

pected configuration. Thus, the user concludes her computer

is safe, despite the presence of malware. Parno also considers

the relative merits of potential solutions.

9.2 Using Your Brain to Check a Computer

Roots of trust established based on timing measurements

(§6.4) can potentially be verified by humans. Franklin

et al. propose personally verifiable applications as part of

the PRISM architecture for human-verifiable code execu-

tion [29]. The person inputs a challenge from a physical list

and then measures the length of time before the application

produces the correct response (also on the list). Verification

amounts to checking that the response is correct and that it

arrived in a sufficiently short period of time. However, the

timing-based proposals on which these solutions rest (§6.4)

still face several challenges.

10 Limitations

When it comes to bootstrapping trust in computers, there ap-

pear to be significant limitations on the types of guarantees

that can be offered against software and hardware attacks. We

summarize these limitations below to alert practitioners to the

dangers and to inspire more research in these areas.

10.1 Load-Time Versus Run-Time Guarantees

As described in §2, existing techniques measure software

when it is first loaded. This is the easiest time to obtain a

clean snapshot of the program, before, for example, it can

create temporary and difficult to inspect local state. However,

this approach is fundamentally “brittle”, since it leaves open

the possibility that malware will exploit the loaded software.

For example, if an attacker exploits a buffer overflow in the

loaded software, no measurement of this will be recorded.

In other words, the information about this platform’s state

will match that of a platform that contains pristine software.

Thus, any vulnerability in the attesting system’s software po-

tentially renders the attestation protocol meaningless. While

§2.2 and §5.3 surveyed several attempts to provide more dy-

namic properties, the fact remains that they all depend on a

static load-time guarantee. This reinforces the importance of

minimizing the amount of software that must be trusted and

attested to, since smaller code tends to contain fewer bugs and

be more amendable to formal analysis.

10.2 Hardware Attacks

As discussed in §6, protection against hardware attacks has

thus far been a tradeoff between cost (and hence ubiquity)

and resilience [4]. Even simple hardware attacks, such as

connecting the TPM’s reset pin to ground, can undermine the

security offered by this inexpensive solution [55]. Another

viable attack is to physically remove the TPM chip and inter-

pose on the LPC bus that connects the TPM to the chipset.

The low speed of the bus makes such interposition feasible

and would require less than one thousand dollars in FPGA-

based hardware. Tarnovsky shows how to perform a more

sophisticated hardware attack [94], but this attack requires

costly tools, skills, and equipment including an electron mi-

croscope. An important consequence of these attacks is that

applications that rely on widespread, commodity secure hard-

ware, such as the TPM, must align the application incentives

with those of the person in direct physical control of the plat-

form. Thus, applications such as BitLocker [68], which help

a user protect her files from attackers, are far more likely to

succeed than applications such as DRM, which attempt to re-

strict users’ capabilities by keeping secrets from them.

This also makes the prospect of kiosk computing daunting.

Kiosks are necessarily cost-sensitive, and hence unlikely to

invest in highly-resilient security solutions. Combining vir-

tualization with a TPM can offer a degree of trust in a kiosk

computer [32], but only if the owner of the computer is trusted

not to tamper with the TPM itself. Of course, other physical

attacks exist, including physical-layer keyboard sniffers and

screen-scrapers. The roots of trust we consider in this survey

are unlikely to ever cope with such attacks.

Similar problems plague cloud computing and electronic

voting applications. When a client entrusts a cloud service

with sensitive data, it can bootstrap trust in the cloud’s soft-

ware using the techniques we have described, but it cannot

verify the security of the cloud’s hardware. Thus, the client

must trust the cloud provider to deploy adequate physical se-

curity. Likewise, a voter might use a trusted device to verify

the software on an electronic voting machine, but she still has

no guarantee regarding the machine’s physical security.

Another concern is hardware attacks on secrets stored in

memory. Even if a combination of hardware and software

protections can protect a user’s secrets while the computer is

active, recent research by Halderman et al. has shown that

data in RAM typically persists for a surprisingly long time

(seconds or even minutes) after the computer has been pow-

ered down [44]. Hence, an attacker who has physical access

to the computer may be able to read these secrets directly out

of the computer’s memory.

11 Future Directions and Open Questions

Developing techniques to report the current state of the

platform without relying on the assumption that previously

loaded software does not contain vulnerabilities represents a

promising direction for future work. This might take the form

of hardware support for recording the fact that the loaded

software has never deviated from its intended control flow

(though even these protections do not wholly suffice [19]), or

that all memory accesses have respected type safety. Sim-

ilarly, existing efforts to convert code identity information

into meaningful, security-relevant properties remains an open

problem, despite the initial work discussed in §5.

In the area of cloud computing, a careful study is needed to

determine what type of root of trust a cloud provider needs in

order to provide adequate assurance to clients. Low-cost so-

lutions (e.g., the TPM) that do not provide tamper-resistance

may not suffice without additional legal protections.

Another area that has not been examined in detail is how

trust bootstrapping can coexist with backups and recovery.

How can a secure coprocessor’s keys be backed up if they

cannot leave the coprocessor? What happens if the TPM mal-

functions? If an attestation convinces the user that her com-

puter cannot be trusted, what remedy does she have? How

can she revert to a previous, trustworthy state? Again, initial

work in this area [6, 95] does not provide complete solutions.

Finally, the existing work on involving humans in attesta-

tions (§9) provides more questions and challenges than an-

swers, and yet the end goal of trust bootstrapping is to help

users make better security decisions.

12 Additional Reading

With a focus on the IBM 4758, Smith’s book [88] provides

a thorough survey of early work in the design and use of

secure coprocessors. Balacheff et al.’s book documents the

early design of the TPM [11], but it is now mostly super-

seded by Grawrock’s more recent book [38], which covers

the motivation and design of the TPM, as well as Intel’s late

launch and virtualization support. Challener et al.’s book [16]

touches on similar topics but focuses primarily on Trusted

Computing from a developer’s perspective, including guid-

ance on writing TPM device drivers or applications that in-

terface with the Trusted Software Stack (TSS). Mitchell’s

book [69] contains a collection of articles surveying the gen-

eral field of Trusted Computing, providing useful overviews

of topics such as NGSCB and DAA.

13 Conclusions

In this survey, we organize and clarify extensive research on

bootstrapping trust in commodity systems. We identify in-

consistencies (e.g., attacks prevented by various forms of se-

cure and trusted boot), and commonalities (e.g., all existing

attempts to capture dynamic system properties still rely in

some sense on static, load-time guarantees) in previous work.

We also consolidate the various types of hardware support

available for bootstrapping trust. This leads us to the observa-

tion that applications based on low-cost, non-tamper-resistant

hardware (e.g., the TPM), must align their incentives with

those of the computer owner, suggesting that applications that

help the user protect her own secrets or check her computer

for malware are more likely to succeed than applications that

try to hide information from her.

We conclude that bootstrapping trust holds promise as a

powerful primitive for building secure systems. We hope that

this paper will help to clarify this sometimes controversial

topic, and inspire other researchers to work in this area.

14 Acknowledgements

The authors are grateful to Virgil Gligor for stimulating dis-

cussions, and to Reiner Sailer, Ron Perez, and the anonymous

reviewers for their insightful comments.

This research was supported in part by CyLab at Carnegie

Mellon under grants DAAD19-02-1-0389 and MURI W 911

NF 0710287 from the Army Research Office, and grants

CNS-0831440 and CCF-0424422 from the National Science

Foundation. The views and conclusions contained here are

those of the authors and should not be interpreted as neces-

sarily representing the official policies or endorsements, ei-

ther express or implied, of ARO, CMU, CyLab, NSF, or the

U.S. Government or any of its agencies.

References
[1] M. Abadi, M. Budiu, Úlfar Erlingsson, and J. Ligatti. Control-flow

integrity. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2005.

[2] Advanced Micro Devices. AMD64 architecture programmer’s man-
ual. AMD Publication no. 24593 rev. 3.14, 2007.

[3] R. Anderson. Cryptography and competition policy - issues with
“Trusted Computing”. In Proceedings of the Workshop on Economics
and Information Security, May 2003.

[4] R. Anderson and M. Kuhn. Tamper resistance – a cautionary note. In
Proc. of the USENIX Workshop on Electronic Commerce, 1996.

[5] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A reliable bootstrap
architecture. In Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2007.

[6] W. A. Arbaugh, A. D. Keromytis, D. J. Farber, and J. M. Smith. Au-
tomated recovery in a secure bootstrap process. In Proceedings of the
Network and Distributed System Security Symposium (NDSS), 1998.

[7] ARM. ARM security technology. PRD29-GENC-009492C, 2009.
[8] T. Arnold and L. P. Van Doorn. The IBM PCIXCC: A new crypto-

graphic coprocessor for the IBM eServer. IBM Journal of Research
and Development, 48(3), 2004.

[9] J. Azema and G. Fayad. M-Shield mobile security technology: mak-
ing wireless secure. Texas Instruments Whitepaper.

[10] K.-H. Baek and S. Smith. Preventing theft of quality of service on
open platforms. In The Workshop on Security and QoS in Communi-
cation Networks, 2005.

[11] B. Balacheff, L. Chen, S. Pearson, D. Plaquin, and G. Proudler.
Trusted Computing Platforms. Prentice Hall, 2003.

[12] S. Berger, R. Cáceres, K. A. Goldman, R. Perez, R. Sailer, and L. van
Doorn. vTPM: Virtualizing the trusted platform module. In Proceed-
ings of USENIX Security Symposium, 2006.

[13] E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation.
In ACM CCS, 2004.

[14] D. Bruschi, L. Cavallaro, A. Lanzi, and M. Monga. Replay attack in
TCG specification and solution. In Proceedings of the Annual Com-
puter Security Applications Conference (ACSAC), 2005.

[15] C. Castelluccia, A. Francillon, D. Perito, and C. Soriente. On the
difficulty of software-based attestation of embedded devices. In ACM
CCS, 2009.

[16] D. Challener, J. Hoff, R. Catherman, D. Safford, and L. Van Doorn.
Practical Guide to Trusted Computing. Prentice Hall, Dec. 2007.

[17] B. Chen and R. Morris. Certifying program execution with secure
procesors. In Proceedings of the Workshop on Hot Topics in Operat-
ing Systems (HotOS), 2003.

[18] L. Chen and M. D. Ryan. Offline dictionary attack on TCG TPM weak
authorisation data, and solution. In Proceedings of the Conference on
Future of Trust in Computing, 2008.

[19] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-control-
data attacks are realistic threats. In Proceedings of USENIX Security
Symposium, 2005.

[20] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. Attested
append-only memory: Making adversaries stick to their word. In
Proceedings of ACM Symposium on Operating Systems Principles
(SOSP), 2007.

[21] D. D. Clark and D. R. Wilson. A comparison of commercial and
military security policies. In IEEE S&P, 1987.

[22] A. Datta, J. Franklin, D. Garg, and D. Kaynar. A logic of secure
systems and its application to trusted computing. In IEEE S&P, 2009.

[23] D.Spinellis. Reflection as a mechanism for software integrity verifi-
cation. ACM Trans. on Information and System Security, 3(1), 2000.

[24] J. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, S. W.
Smith, and S. Weingart. Building the IBM 4758 secure coprocessor.
IEEE Computer, 2001.

[25] J.-E. Ekberg and M. Kylänpää. Mobile trusted module (MTM) - an
introduction. Technical Report NRC-TR-2007-015, Nokia Research
Center, 2007.

[26] P. England, B. Lampson, J. Manferdelli, M. Peinado, and B. Willman.
A trusted open platform. IEEE Computer, 36(7):55–62, July 2003.

[27] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula.
XFI: Software guards for system address spaces. In Proc. of the Sym-
posium on Operating Systems Design and Implementation, 2006.

[28] H. Finney. PrivacyCA. http://privacyca.com.
[29] J. Franklin, M. Luk, A. Seshadri, and A. Perrig. PRISM: Enabling

personal verification of code integrity, untampered execution, and
trusted I/O or human-verifiable code execution. Technical Report
CMU-CyLab-07-010, CMU Cylab, Feb. 2007.

[30] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra:
A virtual machine-based platform for trusted computing. In Proceed-
ings of ACM SOSP, 2003.

[31] T. Garfinkel, M. Rosenblum, and D. Boneh. Flexible OS support and
applications for Trusted Computing. In Proceedings of HotOS, 2003.

[32] S. Garriss, R. Cáceres, S. Berger, R. Sailer, L. van Doorn, and
X. Zhang. Trustworthy and personalized computing on public kiosks.
In Proceedings of the Conference on Mobile Systems, Applications,
and Services (MobiSys), 2008.

[33] M. Gasser, A. Goldstein, C. Kaufman, and B. Lampson. The digital
distributed system security architecture. In Proceedings of the Na-
tional Computer Security Conference, 1989.

[34] J. T. Giffin, M. Christodorescu, and L. Kruger. Strengthening software
self-checksumming via self-modifying code. In ACSAC, 2005.

[35] H. Gobioff, S. Smith, J. Tygar, and B. Yee. Smart cards in hostile
environments. In Proceedings of the USENIX Workshop on Electronic
Commerce, 1996.

[36] B. D. Gold, R. R. Linde, and P. F. Cudney. KVM/370 in retrospect.
In IEEE S&P, 1984.

[37] K. Goldman, R. Perez, and R. Sailer. Linking remote attestation to
secure tunnel endpoints. In Proceedings of the ACM workshop on
Scalable Trusted Computing (STC), 2006.

[38] D. Grawrock. Dynamics of a Trusted Platform. Intel Press, 2008.
[39] GSM Association. GSM mobile phone technology adds another bil-

lion connections in just 30 months. GSM World Press Release, 2006.
[40] S. Gueron and M. E. Kounavis. New processor instructions for ac-

celerating encryption and authentication algorithms. Intel Technology
Journal, 13(2), 2009.

[41] R. Gummadi, H. Balakrishnan, P. Maniatis, and S. Ratnasamy. Not-
a-Bot: Improving service availability in the face of botnet attacks. In
Proceedings of the USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI), 2009.

[42] S. Gürgens, C. Rudolph, D. Scheuermann, M. Atts, and R. Plaga. Se-
curity evaluation of scenarios based on the TCG’s TPM specification.
In Proceedings of the European Symposium on Research in Computer

Security (ESORICS), 2007.
[43] V. Haldar, D. Chandra, and M. Franz. Semantic remote attestation: a

virtual machine directed approach to trusted computing. In Proceed-
ings of the Conference on Virtual Machine Research, 2004.

[44] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest
we remember: Cold boot attacks on encryption keys. In Proceedings
of the USENIX Security Symposium, 2008.

[45] T. Hardjono and G. Kazmierczak. Overview of the TPM key
management standard. TCG Presentations: https://www.
trustedcomputinggroup.org/news/, Sept. 2008.

[46] IBM. CCA basic services reference and guide for the IBM 4758 PCI
and IBM 4764 PCI-X cryptographic coprocessors. 19th Ed., 2008.

[47] Intel Corporation. Intel trusted execution technology – measured
launched environment developer’s guide. Document number 315168-
005, 2008.

[48] N. Itoi. Secure coprocessor integration with Kerberos V5. In Pro-
ceedings of the USENIX Security Symposium, 2000.

[49] N. Itoi, W. A. Arbaugh, S. J. Pollack, and D. M. Reeves. Personal
secure booting. In Proceedings of the Australasian Conference on
Information Security and Privacy (ACISP), 2001.

[50] T. Jaeger, R. Sailer, and U. Shankar. PRIMA: policy-reduced integrity
measurement architecture. In Proceedings of the ACM Symposium on
Access Control Models And Technologies (SACMAT), 2006.

[51] S. Jiang. WebALPS implementation and performance analysis. Mas-
ter’s thesis, Dartmouth College, 2001.

[52] S. Jiang, S. Smith, and K. Minami. Securing web servers against
insider attack. In ACSAC, 2001.

[53] R. Johnson and D. Wagner. Finding user/kernel pointer bugs with type
inference. In Proceedings of the USENIX Security Symposium, 2004.

[54] P. A. Karger, M. E. Zurko, D. W. Bonin, A. H. Mason, and C. E. Kahn.
A retrospective on the VAX VMM security kernel. IEEE Transactions
on Software Engineering, 17(11), 1991.

[55] B. Kauer. OSLO: Improving the security of Trusted Computing. In
Proceedings of the USENIX Security Symposium, 2007.

[56] R. Kennell and L. Jamieson. Establishing the genuinity of remote
computer systems. In Proc. of USENIX Security Symposium, 2003.

[57] C. Kil, E. C. Sezer, A. Azab, P. Ning, and X. Zhang. Remote attesta-
tion to dynamic system properties. In Proceedings of the IEEE/IFIP
Conference on Dependable Systems and Networks (DSN), 2009.

[58] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Der-
rin, D. Elkaduwe, K. Engelhardt, M. Norrish, R. Kolanski, T. Sewell,
H. Tuch, and S. Winwood. seL4: Formal verification of an OS kernel.
In Proceedings of ACM SOSP, 2009.

[59] R. B. Lee, P. Kwan, J. P. McGregor, J. Dwoskin, and Z. Wang. Archi-
tecture for protecting critical secrets in microprocessors. In Proc. of
the International Symposium on Computer Architecture (ISCA), 2005.

[60] A. Leung, L. Chen, and C. J. Mitchell. On a possible privacy flaw in
direct anonymous attestation (DAA). In Proceedings of the Confer-
ence on Trust, 2008.

[61] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda. TrInc:
Small trusted hardware for large distributed systems. In Proceedings
of USENIX NSDI, 2009.

[62] D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. C.
Mitchell, and M. Horowitz. Architectural support for copy and tam-
per resistant software. In The Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2000.

[63] J. Marchesini, S. W. Smith, O. Wild, J. Stabiner, and A. Barsamian.
Open-source applications of TCPA hardware. In ACSAC, 2004.

[64] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki.
Flicker: An execution infrastructure for TCB minimization. In Proc.
of the ACM European Conference on Computer Systems, 2008.

[65] J. M. McCune, A. Perrig, and M. K. Reiter. Safe passage for pass-
words and other sensitive data. In Proceedings of NDSS, Feb. 2009.

[66] R. C. Merkle. A certified digital signature. In Advances in Cryptology
(CRYPTO), 1989.

[67] Microsoft Corporation. Code access security. MSDN .NET Frame-
work Developer’s Guide – Visual Studio .NET Framework 3.5, 2008.

[68] Microsoft Corporation. Full volume encryption using Windows Bit-
Locker drive encryption. Microsoft Services Datasheet, 2008.

[69] C. Mitchell, editor. Trusted Computing. The Institution of Electrical
Engineers, 2005.

[70] T. Moyer, K. Butler, J. Schiffman, P. McDaniel, and T. Jaeger. Scal-
able web content attestation. In ACSAC, 2009.

[71] B. Parno. Bootstrapping trust in a “trusted” platform. In Proceedings
of the USENIX Workshop on Hot Topics in Security, July 2008.

[72] A. Perrig, S. Smith, D. Song, and J. Tygar. SAM: A flexible and secure
auction architecture using trusted hardware. E-Commerce Tools and
Applications, 2002.

[73] C. Rudolph. Covert identity information in direct anonymous attesta-
tion (DAA). In Proc. of the IFIP Info. Security Conference, 2007.

[74] A.-R. Sadeghi, M. Selhorst, C. Stüble, C. Wachsmann, and
M. Winandy. TCG inside? - A note on TPM specification compli-
ance. In Proceedings of ACM STC, 2006.

[75] A.-R. Sadeghi and C. Stüble. Property-based attestation for comput-
ing platforms: caring about properties, not mechanisms. In Proceed-
ings of the Workshop on New Security Paradigms (NSPW), 2004.

[76] R. Sailer, T. Jaeger, E. Valdez, R. Cáceres, R. Perez, S. Berger, J. L.
Griffin, and L. van Doorn. Building a MAC-based security architec-
ture for the Xen open-source hypervisor. In ACSAC, Dec. 2005.

[77] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and im-
plementation of a TCG-based integrity measurement architecture. In
Proceedings of the USENIX Security Symposium, 2004.

[78] L. Sarmenta, M. van Dijk, C. O’Donnell, J. Rhodes, and S. Devadas.
Virtual monotonic counters and count-limited objects using a TPM
without a trusted OS (extended version). Technical Report MIT-
CSAIL-2006-064, Massachusettes Institute of Technology, 2006.

[79] B. Schneier and J. Kelsey. Cryptographic support for secure logs on
untrusted machines. In Proc. of the USENIX Security Symposium,
1998.

[80] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A tiny hypervi-
sor to provide lifetime kernel code integrity for commodity OSes. In
Proceedings of ACM SOSP, 2007.

[81] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla.
Pioneer: Verifying integrity and guaranteeing execution of code on
legacy platforms. In Proceedings of ACM SOSP, Oct. 2005.

[82] A. Seshadri, A. Perrig, L. vDoorn, and P. Khosla. SWATT: Software-
based attestation for embedded devices. In IEEE S&P, 2004.

[83] U. Shankar, T. Jaeger, and R. Sailer. Toward automated information-
flow integrity verification for security-critical applications. In Pro-
ceedings of NDSS, 2006.

[84] E. Shi, A. Perrig, and L. van Doorn. BIND: A time-of-use attestation
service for secure distributed systems. In IEEE S&P, 2005.

[85] S. Smith and V. Austel. Trusting trusted hardware: Towards a formal
model for programmable secure coprocessors. In USENIX Workshop
on Electronic Commerce, 1998.

[86] S. W. Smith. WebALPS: Using trusted co-servers to enhance privacy
and security of web transactions. IBM Res. Rep. RC-21851, 2000.

[87] S. W. Smith. Outbound authentication for programmable secure co-
processors. Journal of Information Security, 3:28–41, 2004.

[88] S. W. Smith. Trusted Computing Platforms: Design and Applications.
Springer, 2005.

[89] S. W. Smith, R. Perez, S. H. Weingart, and V. Austel. Validating
a high-performance, programmable secure coprocessor. In National
Information Systems Security Conference, 1999.

[90] S. W. Smith and S. Weingart. Building a high-performance, pro-
grammable secure coprocessor. Computer Networks, 31(8), 1999.

[91] E. R. Sparks. A security assessment of trusted platform modules.
Technical Report TR2007-597, Dartmouth College, 2007.

[92] J. Stanley R. Ames. Security kernels: A solution or a problem? In
IEEE S&P, 1981.

[93] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas.
AEGIS: Architecture for tamper-evident and tamper-resistant pro-
cessing. In Proc. of the Conference on Supercomputing, 2003.

[94] C. Tarnovsky. Security failures in secure devices. In Black Hat DC
Presentation, Feb. 2008.

[95] Trusted Computing Group. Trusted Platform Module Main Specifica-
tion. Version 1.2, Revision 103, 2007.

[96] Trusted Computing Group. TCG mobile trusted module specification.
Version 1.0, Revision 6, 2008.

[97] J. von Helden, I. Bente, and J. Vieweg. Trusted network connect
(TNC). European Trusted Infrastructure Summer School, 2009.

[98] C. Wallace. Worldwide PC market to double by 2010. Forrester Re-
search, Inc. Press Release, Dec. 2004.

[99] S. Weingart. Physical security for the µABYSS system. In IEEE S&P,
1987.

[100] S. White, S. Weingart, W. Arnold, and E. Palmer. Introduction to
the Citadel architecture: Security in physically exposed environments.
Technical Report RC16672, IBM T. J. Watson Research Center, 1991.

[101] G. Wurster, P. van Oorschot, and A. Somayaji. A generic attack
on checksumming-based software tamper resistance. In IEEE S&P,
2005.

[102] B. S. Yee. Using Secure Coprocessors. PhD thesis, Carnegie Mellon
University, 1994.

[103] X. Zhuang, T. Zhang, H. Lee, and S. Pande. Hardware assisted control
flow obfuscation for embedded processors. In Proc. of the Conference
on Compilers, Architecture & Synthesis for Embedded Systems, 2004.

