
A Contractual Anonymity System

Edward J. Schwartz David Brumley Jonathan M. McCune

Carnegie Mellon University

{edmcman,dbrumley,jonmccune}@cmu.edu

Abstract

We propose, develop, and implement techniques for

achieving contractual anonymity. In contractual anon-

ymity, a user and service provider enter into an anonym-

ity contract. The user is guaranteed anonymity and mes-

sage unlinkability from the contractual anonymity sys-

tem unless she breaks the contract. The service provider

is guaranteed that it can identify users who break the

contract. The significant advantages of our system are

that 1) the service provider is not able to take any action

toward a particular user (such as revealing her identity

or blacklisting her future authentications) unless she vi-

olates her contract, 2) our system can enforce a variety

of policies, and 3) our system is efficient.

1 Introduction

Internet services such as chat rooms for victims of vi-

olence, abuse information and support message boards,

and whistle-blowing services are more compelling to

users if they provide anonymity. Despite users’ desire

for anonymity, service providers must grapple with the

need to identify misbehaving users in order to protect

their service. For example, a provider may need to iden-

tify and stop undesired behavior such as using the an-

onymity service to launch denial of service attacks or

threaten other users.

Thus, an anonymity service must strike a balance be-

tween accountability and anonymity. Users of such ser-

vices want as much anonymity as possible, and ideally,

should not have to trust the service provider. The service

provider, however, must retain some ability to identify

misbehaving users to protect the value of the service.

Previous anonymity protocols [10, 31, 32] resolved

this tension decidedly in favor of the service provider

by allowing the service provider to subjectively judge

whether a user misbehaved. Subjective judging does not

provide adequate anonymity guarantees to the user in

many scenarios because the provider can arbitrarily de-

cide to blacklist (deny future use of the service to) the

user for any reason and thus can discriminate, e.g., treat

each user differently based on her past actions.

In this paper, we propose contractual anonymity,

which offers a wider range of options for resolving the

accountability vs. anonymity tension. In contractual an-

onymity, the user and service provider (SP) enter into

a binding anonymity contract. The user is guaranteed

to remain anonymous and not blacklisted as long as she

follows the contract policy, while the service provider

is guaranteed to be able to identify (and blacklist, if de-

sired) users that break their contract.

In a contractual anonymity scheme, the contract

policy can be an arbitrary boolean function f :
{msg1, . . . ,msgn} → {ALLOWED, VIOLATION}. If

the function returns VIOLATION on a message (or mes-

sages), the message is deemed malicious and the user is

de-anonymized. Example policy scenarios include:

Matching-based A policy may state that any message

matching a pre-defined pattern is considered mali-

cious. Such policies could de-anonymize messages

that match an intrusion detection rule or malware

signature, disallow messages containing a prede-

fined set of profane words, and so on.

Consensus-based A policy may require that a thresh-

old of users sign a petition to de-anonymize a user.

In particular, if n unique users anonymously flag a

message, it is considered malicious and the sender

is de-anonymized. Note that in our protocol the

message will not cause de-anonymization if n − 1
users sign the message, or if the same user signs a

message n times.

Subjective-based A policy may state that any message

selected by a special privileged entity is consid-

ered malicious. For example, any user that sends

a message which is later designated (e.g., signed)

by an appropriate law-enforcement agency’s key

would be considered malicious. These policies can

also enable subjective judging (if it is desired) in

a manner similar to related systems [10, 31, 32],

e.g., by allowing a SP to de-anonymize messages

of its choice. However, in contractual anonymity,

the user must explicitly agree to a contract that al-

lows subjective judging.

Previous Systems Some of these policies can be en-

forced using previous systems. For instance, consensus-

based policies can conceivably be enforced using thresh-

old cryptography [17], and subjective-based policies

have been considered by past works [10, 31, 32].

Subjective-based systems can enforce a variety of policy

functions. However, in such a system, the SP can decide

to change the policy function at any time; the user is

not guaranteed access to the service if she behaves. In

contractual anonymity, the user is guaranteed anonymity

and access to the service if she does not break the con-

tract, and neither the user nor SP can change the contract

without the approval of the other party.

Previous subjective judging protocols also require all

messages to be rate-limited [10, 31, 32]. These restric-

tions prevent the protocols from being used in a variety

of settings, including those where users do not trust the

service provider to make fair subjective judgements, and

for services that send messages at a high rate.

A Protocol for Contractual Anonymity We develop

and implement a contractual anonymity protocol called

RECAP. We show through our implementation of

RECAP that it is feasible to build a secure contractual

anonymity implementation with a small trusted comput-

ing base while simultaneously achieving better perfor-

mance than prior approaches (Section 7).

In RECAP, each user is given an anonymous cre-

dential that allows the user to send messages anony-

mously. RECAP implements anonymous credentials

using group signatures (Section 2.1). At a high level, a

group signature scheme allows any member of the group

to sign on behalf of the group. Individual signatures

from unrevoked members (i.e., users who have not bro-

ken the contract) are indistinguishable from any other

unrevoked member’s signatures. Group signatures al-

low the SP to efficiently authenticate messages without

needing to know each sender’s identity (and still reject

messages from revoked users).

However, group signature schemes are not suffi-

cient to achieve contractual anonymity. Group signa-

tures require a group manager who is capable of de-

anonymizing users at will. To achieve contractual an-

onymity, this entity must be constrained to only de-

anonymize users that violate their contract. We address

this in RECAP by leveraging trusted computing [30] to

implement a verifiable third party, called the account-

ability server (AS), that acts as group manager and

knows the mapping between users’ real identities and

anonymous credentials. Specifically, the AS is a soft-

ware module that will only reveal a user’s real identity if

the SP provides message(s) that prove the user has vio-

lated the contract.

Note that the AS is not arbitrarily trusted by either

the user or SP. We construct the AS with a small trusted

computing base (TCB) that does not include the operat-

ing system or BIOS, and allow the user and SP to verify

the exact code the AS runs (Section 6). We term this ver-

ifiable trust since all parties can verify that the trusted

party is running correctly and in the pre-agreed manner.

Contributions We introduce the concept of contrac-

tual anonymity, in which users are guaranteed anonym-

ity as long as they do not violate the policy of their pre-

negotiated contract with the SP. The SP is guaranteed

that it can learn a user’s real identity and identify that

user’s past and future messages if the user breaches the

contract. We design the RECAP protocol, which is the

first protocol that provides contractual anonymity. We

also implement RECAP with a very small trusted com-

puting base. Through our implementation, we show that

RECAP is more efficient and offers a wider spectrum

of solutions to the accountability vs. anonymity tension

than competing approaches [9, 10, 31, 32].

Organization The remainder of the paper is organized

as follows. In Section 2, we present relevant background

on group signatures and trusted computing. We discuss

how our system operates at a high level in Section 3, and

then in more detail in Section 4. We describe several

advantages of and extensions to our system in Section 5.

Our implementation and evaluation results are described

in Sections 6 and 7, respectively. The discussion is in

Section 8. We explore related work in Section 9. Finally,

we conclude in Section 10.

2 Primitives

2.1 Anonymity and Group Signatures

RECAP uses group signatures [2, 5–8, 13–15] to im-

plement anonymous credentials. In a group signature

scheme, each group member has a unique private sign-

ing key that allows them to sign messages on behalf

of the entire group. There is a single group public

key which can be used to verify any member’s sig-

nature. Group signature schemes provide anonymity

among members of the group, since a verifier cannot dis-

tinguish which group member signed a particular mes-

sage. The group manager is provided with a special trap-

door that can undo the signature anonymity. In RECAP,

the AS, acting as a verifiable third party, acts as the

group manager.

A group signature scheme suitable for RECAP must

support verifier-local revocation [8]. Verifier-local re-

vocation allows the signature verifier to determine if a

message was signed by a revoked user without commu-

nicating with the group manager. The group manager

can revoke a user by publicly disclosing a special token

which verifiers add to their local blacklist. In RECAP,

verifier-local revocation allows the SP to efficiently de-

tect and disregard messages from blacklisted users.

Such a scheme has four procedures: GS KEYGEN,

GS SIGN, GS VERIFY, and GS OPEN. We describe

these algorithms below at a high level. We refer the

reader to previous work [8] that provides the the full

specification including security proofs.

GS KEYGEN(n) The GS KEYGEN algorithm takes

in the number of group members n. The al-

gorithm outputs a group public key KGPK , the

group manager secret key K−1
GMSK

, an n-element

vector K−1
GSK

[1 . . . n] of user secret keys, and

an n-element vector of user revocation tokens

RT [1 . . . n].

GS SIGN(KGPK ,K−1
GSK

[i],M) GS SIGN takes a

message M ∈ {0, 1}∗, group member i’s private

key K−1
GSK

[i], and the group public key KGPK ,

and returns a group signature σ.

GS VERIFY(KGPK ,M, σ,BL) GS VERIFY takes as

input the group public key KGPK , a message M ,

an alleged signature σ, and a blacklist BL that con-

sists of zero or more revocation tokens, and returns

one of {VALID, INVALID}. An output of INVALID

means that either the signature σ is invalid, or that

the signer is on the blacklist BL. In the latter case,

the signer’s identity is also returned.

GS OPEN(K−1
GMSK

,M, σ) GS OPEN takes as input

the group manager secret key K−1
GMSK

, a message

M and a corresponding signature σ. If (M,σ) is a

valid message-signature pair, GS OPEN outputs a

revocation token RT [s] for the signer s. The group

manager can distribute revocation tokens to a veri-

fier, allowing them to detect messages signed by s
using the GS VERIFY algorithm.

The properties of modern group signature schemes

are often based on a framework introduced by Bellare

et al [5]. The group signature scheme we use in our

implementation, the Boneh-Shacham group signature

scheme [8], bases its formal definitions in this frame-

work. A group signature scheme suitable for RECAP

must have the following properties (as described in the

original Boneh-Shacham work [8]):

Correctness For any KGPK , K−1
GSK

[1 . . . n], and

RT [1 . . . n] returned by the GS KEYGEN algo-

rithm, any signature produced by the GS SIGN

algorithm must return VALID when verified us-

ing the GS VERIFY algorithm, unless the user

has been revoked. Specifically, ∀i ∈ {1 . . . n},
GS VERIFY(KGPK ,M, GS SIGN(KGPK ,
K−1

GSK
[i],M),BL) = VALID⇔ RT [i] /∈ BL.

Traceability Traceability is defined in terms of a game

that takes place between a challenger C and an ad-

versary A. The traceability property holds if no

adversary A can win the traceability game with

more than negligible probability. In the traceabil-

ity game, A wins if it can forge a signature that

cannot be traced to any user in a coalition of users

that A controls. The traceability game consists of

three stages:

Setup C runs the GS KEYGEN algorithm, and

provides KGPK and RT [1 . . . n] to A. U, the

set of users in A’s coalition, is initially set to

∅. S, the set of message-signature tuples A
obtained from oracles, is also set to ∅.

Queries A is allowed to query the GS SIGN

and GS CORRUPT oracles. The GS SIGN

oracle takes as input a message M , a

user i ∈ {1 . . . n}, and outputs σ ←
GS SIGN(KGPK ,K−1

GSK
[i],M). C sets S ←

S ∪ {(M,σ)} for each message-signature

pair returned by the GS SIGN oracle. The

GS CORRUPT oracle allows A to corrupt a

user into joining the coalition. GS CORRUPT

takes a user i ∈ {1 . . . n} as input, and out-

puts K−1
GSK

[i], the user’s private key. The

challenger sets U ← U ∪ {i} for each user

i corrupted by the GS CORRUPT oracle.

Response A outputs a message M ′, a set of revo-

cation tokens that forms a blacklist BL′, and

a signature σ′.

An adversary A wins the game if all of the follow-

ing conditions hold:

• GS VERIFY(KGPK ,M ′, σ′,BL
′) = VALID

• GS OPEN(K−1
GMSK

,M ′, σ′) = i /∈ U

• (M ′, σ′) /∈ S

Selfless-anonymity Selfless-anonymity, like traceabil-

ity, is defined in terms of a game between an ad-

versary A and a challenger C. In the selfless-

anonymity game, A tries to determine which of

two keys was used to generate a signature σ. The

selfless-anonymity property holds if no adversary

A can win the selfless-anonymity game with more

than negligible advantage over random guessing.

The game has five stages:

Setup C runs the GS KEYGEN algorithm and ob-

tains KGPK , K−1
GSK

[1 . . . n], RT [1 . . . n]. C
gives KGPK to A. C sets U , the set of users

that A has compromised or revoked, to ∅.

Queries The adversary can query the GS SIGN,

GS CORRUPT and GS REVOKE oracles. C
runs the GS SIGN oracle by computing σ ←
GS SIGN(KGPK ,K−1

GSK
[i],M) where user

i and message M are inputs, and returns σ
to A. A can obtain the private key of user

i ∈ {1 . . . n} using the GS CORRUPT ora-

cle. C runs this oracle by returning K−1
GSK

[i]
and setting U ← U ∪ {i}. The GS REVOKE

oracle allows the adversary to obtain the re-

vocation token for user i ∈ {1 . . . n}. C sim-

ulates this oracle by returning RT [i] and set-

ting U ← U ∪ {i}.

Challenge A chooses a message M and user in-

dices i0 and i1 where i0 /∈ U and i1 /∈ U. C

chooses a random bit b
R
← {0, 1} and returns

σ′ ← GS SIGN(KGPK ,K−1
GSK

[ib],M) toA.

Restricted Queries A is allowed to make queries

as in the Queries stage. However, in this

stage the GS CORRUPT and GS REVOKE or-

acles cannot be queried for users i0 and i1.

Output A outputs a bit b′. If b = b′, A wins.

The Boneh-Shacham [8] scheme is an efficient group

signature scheme that provides these properties. Specif-

ically, signing a message takes about1 eight modular ex-

ponentiations and two computations of a bilinear map.

1This assumes that computing a group isomorphism takes roughly

the same amount of time as computing a modular exponentiation.

Verification with an empty blacklist (BL) requires ap-

proximately six modular exponentiations and three com-

putations of a bilinear map. There are two ways of

adding local revocation to the verification algorithm.

The first, which provides the above properties of cor-

rectness, traceability, and selfless-anonymity, can be

achieved using a O(|BL|) algorithm, which performs

two additional bilinear map computations for each entry

in the verifier’s blacklist.

However, the second type of revocation can be done

in O(1) time by using a precomputed revocation table

at the expense of allowing a small number of messages

to be linked. In the O(|BL|) scheme, each signature

contains a random identifier r that ranges over a large

group. The identifier r is used when performing revoca-

tion checks. The O(1) scheme constrains this identifier

to range from 1 . . . k, which allows the revocation ta-

ble to be computed in advance. The downside is that a

verifier can determine that two signatures with the same

value of r that are signed by the same user were in fact

signed by the same user – this is called partial unlink-

ability, Unfortunately, there is no formal definition of

partial unlinkability [8]. Informally, partial unlinkabil-

ity ensures that a verifier can only link (e.g., determine

that signer(m1) = signer(m2)) one out of every k sig-

natures signed by the same user for the same site (e.g.,

a SP in our scheme), where k is a security parameter.

For instance, if k = 100, 1% of the signatures are link-

able. We believe that in many cases the benefits of con-

stant time revocations outweigh the downside of having

a small number of linkable messages, and so we consider

the O(1) scheme in our implementation. We discuss the

repercussions of this further in Section 8.4.

2.2 Trusted Computing and Contract Enforce
ment

RECAP uses a verifiable third party (the AS) to se-

curely bind user identities to contract policies and con-

vince remote parties that it has done so. These proper-

ties can be achieved using platform security technolo-

gies built on the Trusted Platform Module (TPM) which

is available in many recent commodity platforms [1, 20,

30]. Alternatively, secure coprocessors like the IBM

4758 [27] provide similar properties and stronger resis-

tance to physical attacks, but are more expensive and

not as readily available (the pros and cons of each are

discussed further in Section 8.2). Specifically, RECAP

will work on any trustworthy computing mechanism that

provides the following properties:

Isolation Isolation allows execution of software com-

ponents to take place in an isolated, verifiable envi-

ronment such that any OS, Virtual Machine Mon-

itor (VMM) or BIOS code that is running cannot

affect or observe the execution in the isolated envi-

ronment. Software running in isolation can have

a small, self-contained Trusted Computing Base

(TCB) that does not include the OS, BIOS, or de-

vice firmware. This is useful because the TCB of

software running on commodity operating systems

is generally very large, usually including the oper-

ating system, BIOS, etc.

Sealed Storage Sensitive data is protected using sealed

storage, whereby data can be encrypted such that

subsequent decryption is only possible if the plat-

form is executing specific software. For instance,

this can be used with isolation to ensure that sensi-

tive information can only be decrypted by a specific

software component running in isolation.

Attestation One system can prove to another that it

has loaded certain code for execution within an

isolated environment using attestation. An attes-

tation demonstrates to a remote verifier that the at-

testing platform instantiated an execution environ-

ment with a particular code module, along with

its input and output values. We denote the pro-

cess of creating an attestation of the currently run-

ning code module with input i as GEN ATTEST(i).
A third party can compute the value an attestation

should have for a code module running with input

i as EXP ATTEST(code module, i). Only an attes-

tation from a platform executing the code module

on input i should be equal to the verifier’s, i.e.,

GEN ATTEST(i) = EXP ATTEST(code module, i).

Unique Identifiers Each user has a real identity that

is revealed if she violates the contract. For con-

creteness, we assume RECAP uses the unique, un-

spoofable identifier found as part of various trusted

computing platforms, called the endorsement cer-

tificate. We also refer to the endorsement certifi-

cate as the trusted computing identifier. Section 5

discusses the importance of practical unique iden-

tifiers in the context of Sybil attacks.

Since the user and AS both have different roles in

RECAP, it may be desirable to use different trusted

computing implementations for each party. For instance,

since the AS stores sensitive information, it may be

worthwhile to use a secure coprocessor that is designed

to withstand physical attacks for the AS (discussed more

in Section 8.2), but use the more readily available TPM-

based platform for the user.

3 Design Overview

3.1 Contractual Anonymity Requirements

A contractual anonymity protocol should have the

following properties:

Unlinkability We consider a user u to be unlink-

able in an unlinkability set SL if, given any two

messages m1 and m2 such that signer(m1) =
signer(m2) = u, an adversary can determine that

signer(m1) ∈ SL and signer(m2) ∈ SL, but

the probability that the adversary can determine

signer(m1) = signer(m2) is ≤ ǫ, a security pa-

rameter in our system. ǫ = 0.01 means that 1% of

messages from the same user can be linked. A user

is unlinkable unless she breaks her contract.

Note that unlinkability implies the weaker notion

of anonymity, e.g., that an adversary cannot learn

the identity of the user that sent a message.

Contract-based The user and SP enter in a con-

tract, and both parties are bound by the con-

tract. A contract unambiguously specifies

the agreed-upon terms of service with a pol-

icy function f : {msg1, . . . ,msgn} →
{ALLOWED, VIOLATION}. If the user signs some

messages m such that f(m) returns VIOLATION,

these signed messages can prove misbehavior to the

AS, who will de-anonymize the user that signed

m. Once a user is de-anonymized, unlinkability

no longer holds for that user. Neither the user nor

the SP can modify an accepted contract; they must

explicitly agree to a new contract if they wish to

change the policy function f .

Revocability The SP is able to obtain a user’s iden-

tity if the SP has proof that the user broke her con-

tract. Specifically, the proof is a set of messages m
signed by the user such that f(m) returns VIOLA-

TION, where f is the user’s contract policy func-

tion. The SP can then take appropriate action, e.g.,

blacklist the user.

Efficiency The protocol should be as efficient as possi-

ble. This includes, but is not limited to, scaling well

with respect to the number of blacklisted users and

not requiring stringent rate limiting.

At a high level, previous approaches fail to meet

these requirements since they do not bind anonymity to

a pre-negotiated contract. For example, many existing

anonymity systems require an unverifiable trusted third

party (TTP) that is capable of de-anonymizing users at

will [8, 12, 13]. More recent systems [10, 32] allow

for subjective judgement and anonymous blacklisting,

which allow a SP to blacklist a user for any reason and

at any time without completely de-anonymizing her. In

these systems, the user is never guaranteed unlinkability,

even if she follows the SP’s posted policies.

3.2 RECAP Overview

We propose RECAP, a protocol for achieving the

desired contractual anonymity properties. RECAP in-

volves three parties.

Accountability
Server

Service ProviderUser

Registration

Breach

Attestation

Public Key

Request−Contract

Anonymous Communication

Malicious msg

Signed message

User’s identity

Malicious msg

Contract

Attestation, Contract, Anonymous credentials

Figure 1. The three stages of RECAP are
registration, anonymous communication,
and breach.

User The user wants to access the service that is pro-

vided by the service provider. However, she may not

trust the SP or the other users, and thus wants to be anon-

ymous and unlinkable when using the service.

Service Provider The service provider (SP) wants to

provide anonymous and unlinkable access to its service.

However, the SP also wants the ability to blacklist users

who threaten the utility of the service.

Accountability Server The accountability server

(AS) is a verifiable third party that manages users’ anon-

ymous credentials and de-anonymizes users that violate

their contracts. Specifically, the user and SP can ver-

ify that the AS de-anonymizes users if and only if they

break their contract.

An overview of the different stages and participants

of RECAP is shown in Figure 1. We provide an

overview of the stages below, and then discuss them in

greater detail in Section 4.

3.2.1 Protocol Stages

Setup During setup, the parties must generate two

types of keys. The user, AS, and SP must generate pub-

lic/private keypairs that can be used for digital signatures

and asymmetric encryption (e.g., RSA keypairs). The

user only uses these asymmetric keys when registering

with the AS. The AS generates group signature keys for

each group required. The user and AS generate and seal

their keypairs (and related sensitive information) so that

only the trusted RECAP code can decrypt it. The SP

obtains a certificate that binds its identifying name to its

public key (like a SSL certificate).

Registration Phase In the initial registration phase a

SP and user agree on a specific contract policy. The con-

tract policy stipulates the rules that users are expected

to follow. We discuss policies further in Sections 3.3

and 8.3.

In RECAP, the user receives a contract policy pro-

posed by the SP. If she agrees to the policy, then she

requests a contract containing that policy from the AS.

The AS returns an anonymous credential and a contract

for the user that can be used with the SP.

The contract can be thought of as proof that the AS

has bound together the user’s real identity, anonymous

credential, and the contract policy. It provides assurance

to the SP that the AS knows the true identity of the user

assigned the anonymous credential, and will reveal that

identity if given proof that the user has broken the policy

in her contract.

At the completion of the registration phase, the SP

and user have a contract that guarantees the user’s real

identity will only be revealed by the AS if the SP can

submit a set of messages signed by the user that violate

the contract.

Anonymous Communication Phase In the anony-

mous communication phase the user uses her anony-

mous credential to interact with the SP. In particular, the

user communicates with the service by digitally signing

a message with her group private key. The SP then ver-

ifies that the message was created by a user with a valid

contract by verifying the signed message with the group

public key specified in the contract.

Since each message must prove it came from an au-

thorized user, we also refer to communicating messages

to the SP as performing an authentication. An anony-

mous communication operation is analogous to the au-

thentication operation of an anonymous authentication

protocol [31, 32].

Contract Breach A breach of contract happens when

the user sends message(s) prohibited by the contract pol-

icy to the SP. The SP can identify which user violated

the contract by presenting the prohibited message(s) to

the AS. Upon confirming that the message(s) violate

the agreed-upon contract, the AS reveals the user’s real

identity and group signature revocation token to the SP.

This allows the SP to identify any subsequent and prior

communication using the anonymous credential.

At the end of the breach phase, the SP has the ca-

pability to identify the user who breached her contract,

and thus can take appropriate action. To be concrete,

we assume the SP will blacklist the user. The blacklist

(BL) is a list of users who have violated the contract and

are no longer allowed to use the service. The SP can

blacklist the user by adding the user’s anonymous cre-

dential to her group signature blacklist. To prevent the

user from obtaining a new anonymous credential, we al-

low the SP to control the AS’s blacklist, which is a list of

real identities that are not allowed to obtain new anon-

ymous credentials. RECAP can easily be extended to

support other actions as well, such as anonymous black-

listing, in which SPs are given the ability to blacklist

users without needing to know their real identities.

3.3 Contract Policies

An anonymity contract is a binding agreement that

states that a user’s real identity may be exposed if she

violates the contract terms. We call those terms the con-

tract policy.

A contract policy is a boolean predicate f : {msg1,
msg2, . . . ,msgn} → {ALLOWED, VIOLATION}. The

status VIOLATION indicates that the messages violate

the contract terms, and thus the user is in breach of con-

tract. ALLOWED indicates that the messages do not vio-

late the policy. We do not make any attempt to model a

“morality function”; such policies are outside the scope

of our system. However, there are many classes of poli-

cies that do fit our model, several of which were de-

scribed in Section 1. We discuss policies further in Sec-

tion 8.3.

4 Architecture

4.1 Establishing a Secure Channel

Why is a New Protocol Needed? Many parts of

RECAP rely on the ability to create a secure channel

between the protocol participants. A RECAP secure

channel must be able to provide 1) confidentiality and

integrity of any messages sent inside the channel, and 2)

assurance that the remote party’s private key is sealed so

that only the trusted RECAP software can access it.

Although confidentiality and integrity of messages

inside the channel can be achieved using standard tech-

niques (i.e., SSL/TLS), RECAP has several require-

ments which motivate a new secure channel protocol:

• The user’s endorsement certificate is used as the

user’s unique identifier and as a required compo-

nent for verifying user attestations. Thus, the se-

cure channel protocol must not require the user to

reveal her endorsement certificate, which is confi-

dential, until it has been established that only the

trusted RECAP code can access it.

• The untrusted part of the RECAP software (e.g.,

the part not running in trusted computing-enabled

isolation) must demonstrate that it runs the trusted

RECAP software in response to the secure chan-

nel establishment. In addition, the trusted RECAP

software must prove it has access to its trusted long

term RSA key. Thus, two sets of challenges are

needed.

• Any agent running the secure RECAP software in

an isolated, verifiable environment is considered to

be trusted. Because of this, it is not only important

to establish confidentiality and integrity among the

possessors of the keys used to setup the channel,

but also establish that these keys are only accessible

by the trusted RECAP software.

RECAP achieves these requirements using the protocol

described below. RECAP’s secure channel protocol is

similar to existing secure channel protocols, modulo the

changes needed to add the above features.

Protocol Details Lines 3–16 of Figure 2 show how we

establish a secure channel in the registration protocol be-

tween the user and AS. A secure channel is established

U-SP registration protocol

1. U→ SP: {message, σ = ⊥, contract = ⊥}
2. SP→ U: {Get-Contract, AS, SP, AddrSP , CP}

K
−1

SP

U-AS registration protocol

3. U: NU

R
← {0, 1}α, RU

R
← {0, 1}α

4. U→ AS: {KU , NU}

5. AS: NAS

R
← {0, 1}α, RAS

R
← {0, 1}α

6. AS: a← GEN ATTEST(KU |NU |KAS |NAS)
7. U← AS: {KAS , NAS , a, CEndorse−AS}
8. U: a′ ← EXP ATTEST(Trusted RECAP Code, KU |NU |KAS |NAS)
9. U: abort if a 6= a′ User knows AS running trusted code.

10. U→ AS: {{RU}K−1

U

}KAS

11. U← AS: {{RU + 1, RAS}K−1

AS

}KU
User knows KAS bound to trusted AS code.

12. U: a← GEN ATTEST(KU |NU |KAS |NAS)
13. U→ AS: {{RAS + 1, a, CEndorse−U}K−1

U

}KAS

14. AS: a′ ← EXP ATTEST(Trusted RECAP Code, KU |NU |KAS |NAS)
15. AS: abort if a 6= a′ AS knows user running trusted user code and

KU bound to trusted user software.

16. Setup symmetric encryption and MAC Secure channel established.

17. U→ AS: {Get-Contract, AS, SP, AddrSP , CP}
K

−1

SP

18. AS: abort if CEndorse−U on SP’s blacklist

19. AS: execute key binding protocol

20. U← AS: {{CP, KGPK , KSP }K−1

AS

, K−1

GSK
[i]}

U-SP anonymous communication protocol

21. U→ SP:
{message, σ = GS SIGN(KGPK , K−1

GSK
[i], message), contract =

{CP, KGPK , KSP }K−1

AS

}

22. SP: if GS VERIFY(KGPK , message, σ,BL) = VALID, accept message.

Figure 2. The registration and anonymous communication protocols. The user obtains a con
tract using the registration protocol. The anonymous communication protocol is then used
to send anonymous messages to the service provider (SP). All messages after Line 16 are

implicitly encrypted and MACed using symmetric cryptography.

in the breach protocol as well, but the process is very

similar. On Lines 3–4 of Figure 2, the user generates a

nonce NU and sends the nonce and its public key KU

to the AS. The AS generates its own nonce NAS and an

attestation to prove that is running the RECAP software

in response to the user’s request (Lines 5–6).

A verified attestation proves several important facts

to the verifier (in this case, the user). First, by includ-

ing NU and NAS in the attestation, the AS proves that it

is responding to the user’s request, which ensures fresh-

ness, i.e., the isolated execution environment ran in re-

sponse to the user’s request. Second, the AS proves that

messages encrypted to KAS or digitally signed by K−1
AS

can only be read or created by the AS. This is because a

correct AS keeps security-sensitive data like K−1
AS sealed

so that only the trusted RECAP software can access it.

The user can verify this, because they can verify the ex-

act code the AS is running. Last, the AS also conveys

that it has received the user’s key, KU .

After creating the attestation, the AS sends the attes-

tation, nonce, its public key and its trusted computing

device endorsement certificate (Line 7). The endorse-

ment certificate is issued by a trusted computing de-

vice’s manufacturer and usually indicates that the private

component of a keypair is known only to that device.

This lets a verifier confirm that an attestation came from

a legitimate trusted computing device. The user’s en-

dorsement certificate also doubles as her unique identity,

which is discussed further in Section 5. At this point, the

user verifies that the attestation is correct; if it is not, she

aborts the protocol (Lines 8–9). Otherwise, she encrypts

and signs her random number, and expects the AS to

increment it in response to prove that it can decrypt and

sign using K−1
AS (Line 10). It is worth noting that the ran-

dom number is generated and handled in plaintext form

only by the trusted RECAP code. In contrast, the nonce

used earlier was not a secret. In response, the AS sends

RU + 1 and its own random number (Line 11). When

the user receives its incremented random number, it be-

lieves that KAS is bound to the trusted RECAP code,

and is willing to send its endorsement certificate en-

crypted under that key as part of an attestation, because

the RECAP code will only disclose the user’s endorse-

ment certificate (which is also her unique identity) if she

breaks her contract. The user generates an attestation

which provides similar properties to the AS, and sends

it with its own endorsement certificate, and the AS’s in-

cremented random number (Lines 12–13). Upon receiv-

ing the incremented random number, the AS verifies the

user’s attestation (Lines 14–15), and both parties then

switch to more efficient symmetric cryptography (Line

16). This can be done with standard techniques [24].

4.2 Protocol Phases

The RECAP protocol is split into three phases:

the registration, anonymous communication, and breach

phases. The registration phase is required before a user

interacts with the SP. The anonymous communication

phase serves to mark messages as originating from a user

that has a valid contract. The breach phase takes place

when the SP wants to know who created messages that

are in violation of the contract.

Registration Phase RECAP begins with the user

connecting to the SP (Line 1 in Figure 2). The user will

not have a contract since it is her first time connecting,

and indicates this in her initial message. The SP replies

with a message indicating that a contract is required to

use the service (Line 2). Specifically, the user must ob-

tain a contract from the SP-specified AS and the con-

tract must have the SP-specified contract policy (CP),

which is the policy that the user must agree to. If the

user agrees to abide by the CP, she connects to the AS

and begins to create a contract. Otherwise, she aborts.

We allow the SP to choose the policy, since that maps

most closely to existing services. However, an alternate

version of RECAP might be more flexible, i.e., allow a

user to choose one of several policies, negotiate policy

terms, etc.

To obtain a contract, the client connects to the AS and

begins the U-AS protocol (Line 3). As was described in

Section 4.1, the user and AS establish a secure channel

(Lines 3–16). Once the channel is established, the client

sends the contract policy that the SP requires (Line 17).

The AS maintains a list of users that have been black-

listed by the SP, and aborts if one of those users is at-

tempting to re-register (Line 18).

At this point in the protocol (Line 19), the AS con-

AS-SP key binding protocol

1. AS: NAS

R
← {0, 1}α

2. AS→ SP: {KAS , NAS}

3. SP: NSP

R
← {0, 1}α

4. AS← SP: {{NSP , NAS}K−1

SP

, KSP , CSP }

5. AS: a← GEN ATTEST(KSP |NSP |KAS |NAS)
6. AS→ SP: {a, CEndorse−AS}

7. SP:
a′ ← EXP ATTEST(Trusted RECAP Code,

KSP |NSP |KAS |NAS)
8. SP: abort if a 6= a′

Figure 3. The key binding protocol.

nects directly to the SP and executes the key binding

protocol shown in Figure 3. The key binding proto-

col allows the SP to ensure that the AS is running the

RECAP software, and to verify that K−1
AS is bound to

that software. This verification is proof to the SP that

a user’s identity will be revealed if that user breaks her

contract. This protocol only needs to be executed once

per (AS,SP) pair, since the result can be cached. Note

that the key-binding protocol is similar to establishing

a secure channel as described in Section 4.1. The cen-

tral difference is there is no need to switch to symmet-

ric cryptography since no messages are transmitted after

the AS’s key is shown to be bound to the trusted AS

software.

After the key binding, the AS proceeds to create a

contract. The contract consists of the contract policy the

user agrees to, the public key of the user’s group signa-

ture group, and the SP’s public key. The AS sends the

contract and a group private key to the user (Figure 2,

Line 20). Finally, the user sends the contract to the SP,

and she is ready to start endorsing messages (Line 21).

Anonymous Communication Phase To endorse a

message, the user simply signs the message m using her

group private key K−1
GSK

[i], and sends the signed mes-

sage to the SP (Line 21). When the SP receives a signed

message, it ensures that it has received a valid contract

with the corresponding group public key. The SP also

verifies that the message has a valid signature by execut-

ing the group signature verification operation (Line 22).

Breach Phase When a user generates message(s) that

violate the SP’s policies, the SP delivers the offending

message(s) to the AS. This protocol is shown in Fig-

ure 4. After establishing a secure channel (Lines 1–11),

the AS verifies that the received messages are signed

by a group that the AS manages (Lines 12–13). Then,

the AS verifies that the messages violate the contract

Breach protocol

1. AS: NAS

R
← {0, 1}α, RAS

R
← {0, 1}α

2. AS→ SP: {KAS , NAS}

3. SP: NSP

R
← {0, 1}α, RSP

R
← {0, 1}α

4. AS← SP: {KSP , NSP }
5. AS: a← GEN ATTEST(KSP |NSP |KAS |NAS)
6. AS→ SP: {a, CEndorse−AS , {{RAS}K−1

AS

}KSP
}

7. SP:
a′ ← EXP ATTEST(Trusted RECAP Code,

KSP |NSP |KAS |NAS)
8. SP: abort if a 6= a′

9. AS← SP: {{RAS + 1, RSP }K−1

SP

}KAS

10. AS→ SP: {{RSP + 1}
K

−1

AS

}KSP

11. Setup symmetric encryption and MAC

12. AS← SP: {m = {message1, σ1, . . . , messagen, σn}}

13. AS:
∀mi ∈ m, abort if

GS VERIFY(KGPK , mi, σi,BL) = INVALID

14. AS: abort if CP (m) 6= VIOLATION

15. AS: gid← GS OPEN(K−1

GMSK
, msg1, σ1)

16. AS→ SP: {gid, RT [gid],GidToEKcert[gid]}

Figure 4. The breach protocol. The service
provider (SP) submits any messages sus
pected to be in violation of the contract to

the accountability server (AS). TheAS veri
fies the messages, and returns the identity

of the users that violated their contracts, if
any. All messages after Line 11 are implic
itly encrypted and MACed using symmet

ric cryptography.

(Line 14). The AS obtains the group private key2 that

violated the contract, by using the GS OPEN operation

(Line 15). It then reveals 1) the user’s group signature

revocation token, and 2) the user’s real identity to the

SP (Line 16). With that information, the SP can add

the user’s current group key to the group signature re-

vocation list so that messages signed with her anony-

mous credential will no longer be accepted. The SP can

also add the user’s real identity to a blacklist on the AS

that prevents the user from obtaining a new contract and

anonymous credential.

4.3 Security Overview

4.3.1 Trusted Computing

RECAP builds some of the properties required for a

contractual anonymity system from the properties of

trusted computing:

2We assume for simplicity here that all messages in violation of the

contract policy are signed with the same private key, i.e., that there is

only a single malicious user.

Contract-based and Revocability These properties

rely on the trusted computing properties of attes-

tation, isolation, and sealed storage. The contract

policies can be fairly enforced by running the

trusted RECAP software in isolation and keeping

sensitive information in sealed storage, and then

proving this using attestation. This allows the

user and SP to ensure that the AS is running a

known-good implementation in hardware-assisted

isolation, e.g., that the AS behaves as described

in this paper and is not a malicious or incorrect

implementation.

4.3.2 Group Signatures

RECAP also inherits properties from group signatures:

Unlinkability Unlinkability comes directly from

group signature properties. For instance, if

the O(1) revocation scheme is being used,

unlinkability with ǫ = 1
k

comes from partial

unlinkability. If the O(|BL|) revocation scheme is

used, unlinkability with negligible ǫ comes from

selfless-anonymity. We discuss this choice further

in Section 8.4.

Contract-based Users must obtain anonymous cre-

dentials from the AS, who can hold each user ac-

countable to the contract policy. This follows from

traceability, which ensures a user cannot forge a

signature without having anonymous credentials.

Revocability Again from traceability, any signature

produced can be traced back to the key used to pro-

duce it. Thus, any message submitted by a user that

violates her contract can be traced back to that user.

That user can then be revoked from the service.

Protocol Correctness Although a formal security

proof of the RECAP protocol is outside the scope of

the paper, we note the protocol is similar to well-known

secure protocols. The high-level semantics of the proto-

col (e.g., actions that take place after the secure channel

is established) are straight-forward and can be manually

verified. The setup of the secure channel can be more

easily understood if one considers the basic steps of each

party. Specifically, each party performs the following

steps:

1. Attests to the code she is running in an isolated en-

vironment (Figure 2, Lines 6, 8, 12, and 14)

2. Sends her public key and certificate (Lines 4, 7, and

13)

3. Issues and responds to a challenge (Lines 10, 11,

and 13)

4. Sets up symmetric cryptography (Line 16).

In other words, our secure channel protocol is similar to

standard secure channel protocols (such as SSL 3.0), but

does not negotiate which ciphers are used3, and includes

attestations. For instance, a model checking approach

to verifying SSL has shown that the high level seman-

tics of SSL can be reduced to similar simple steps [25].

We leave the augmentation of existing similar security

proofs with our additional attestation and TPM steps as

future work.

5 Features

Anti-discrimination RECAP prevents a SP and its

AS from discriminating against anonymous users based

on their past messages. Previous systems with TTPs

have not appropriately limited the power of the TTP to

blacklist [8, 12, 13], and so the TTP could potentially

blacklist well-behaved users. For example, someone

could compromise the TTP and blacklist users, or bribe

the TTP itself to misbehave. Thus, such systems can

discriminate.

Previous TTP-free systems allowed subjective judg-

ing [31,32], i.e., users can be blacklisted for any reason.

The ability to subjectively judge means that a SP can

block all future authentications from a user based on her

past actions. For example, a user could post a message

the SP dislikes, and the SP would be free to block all

future authentication. Thus, the SP could discriminate

against a user without knowing her real identity in such

systems.

In RECAP, anyone can verify that the AS will only

de-anonymize a user if her contract is violated. Further,

the AS seals each user’s real identity, which results in

an encrypted blob that can only be decrypted when the

trusted RECAP code is running in a verifiable execu-

tion environment. Thus, even if the untrusted part of the

RECAP software, the operating system, or the BIOS is

compromised, a collusion between the AS and SP can-

not reveal a behaving user’s real identity. RECAP also

provides unlinkability of multiple authentications. Thus,

a SP cannot discriminate against users who have not bro-

ken their contract. The SP would have to deny service

to all behaving users in order to deny service to one.

Verifiable Blacklists Blacklists are commonly used in

network services to block known malicious identities.

3RECAP always uses the same ciphers for simplicity.

Current blacklists, however, typically do not provide

much information as to why a particular identity is on

the list. RECAP can easily be extended to implement

verifiable blacklists. We say a blacklist is verifiable if

each identity on the blacklist is accompanied by a proof

of the malicious activity that led to its being blacklisted.

During registration, a user and SP agree to the con-

tract policy. The user will register her trusted computing

device endorsement certificate CEndorse−U with the AS

and receive her anonymous credential K−1
GSK

[i]. Dur-

ing contract breach, the AS is provided with a set of

signed messages that violate the contract. When pro-

vided with evidence of a breach, the AS responds with

both K−1
GSK

[i] (so that subsequent messages from the

user can be identified) and CEndorse−U (so that the

blacklisted user cannot obtain a new anonymous creden-

tial).

In RECAP, the AS can publish those mes-

sages as proof that a breach has occurred to en-

able verifiable blacklists. More specifically, the

AS publishes the tuple ({CP,KGPK ,KSP }K−1

AS

,M, σ,

K−1
GSK

[i], GEN ATTEST(K−1
GSK

[i] → CEndorse−U)),
such that {CP,KGPK ,KSP }K−1

AS

is the user’s contract,

M and σ are the offending message(s) and signature(s),

and the AS attests to the fact that the anonymous creden-

tial (group signature private key) was issued to the ref-

erenced real identity. No trusted maintainer is required

because the blacklist entries contain proof that the con-

tract was violated.

Practical Unique Identifiers In the Sybil attack [18]

a user can subvert security by forging new identities.

In our system, users cannot create new identities them-

selves without breaking the traceability property of

group signatures. Thus, in our setting a Sybil attack cor-

responds to a user successfully obtaining access to a new

real identity, since a new identity allows her to obtain a

new contract even if her old identity is on the blacklist.

Our architecture mitigates the Sybil problem by

leveraging the unique identifier found in each user’s

trusted computing device as the user’s real identity. A

user cannot practically obtain a new identifier for her

computer without replacing the trusted computing de-

vice (since it is a physical device and there is no pro-

grammatic way to replace it).

We believe that our solution is more practical than

solutions in other systems. For instance, in PEREA [32],

a suggested method is for the user to register with the SP

by presenting her driver’s license in person4. However,

we argue that this is impractical for most services.

4This still preserves anonymity because the registration is not link-

We do note that our solution is not perfect, since one

computer can be shared by multiple users, and one user

can own multiple computers. In particular, well-funded

attackers may be able to purchase such a large number

of computers that blacklisting all of them would be dif-

ficult. Services concerned about this type of adversary

can use a more precise identifier as a unique identity,

such as a driver’s license or passport.

6 Implementation

We implemented RECAP using two cryptographic

libraries: the PBC SIG group signature library [22] that

is a framework for implementing pairing based group

signature schemes, and the XySSL library [34] for im-

plementations of RSA, AES, SHA-1, and HMAC. We

use 256-bit AES keys, HMAC keys, nonces and random

values. RSA keys are 1024-bit. We use the Boneh-

Shacham group signature scheme [8] with a Type-A

pairing. We do not currently implement any local re-

vocation checking for the group signature scheme [8],

although we intend to implement this in future work. In-

stead, we consider the effects of using the O(1)-time

revocation scheme that adds a table-lookup per verifica-

tion, which is unlikely to significantly change our per-

formance measurements. We assume that this table-

lookup will have a negligible effect on our measure-

ments. Options for implementing such revocation are

discussed in Section 8.4.

Portions of the code that execute on the user’s and

AS’s platforms constitute the security-sensitive, trusted

components of RECAP. Our implementation uses the

Flicker system [23] to provide the attestation, sealed

storage, and isolation properties specified in Section 2.2

by using a TPM [30] and hardware-supported dynamic

root of trust [19]. Datta et al. have proven that dy-

namic root of trust systems like Flicker allow a veri-

fier to make strong conclusions about the software state

of an attesting platform. The Trusted Computing Base

(TCB) for security-sensitive RECAP code includes only

the Flicker stub code, and excludes the legacy operating

system, BIOS, and all DMA-capable devices. We ex-

pect the trusted RECAP code to be the same across all

uses of RECAP, i.e., the code will be publicly known

and evaluated to be “known-good” by manual or formal

security analysis. Our implementation bases each user’s

unique identity on the Endorsement Credential found in

each TPM (which is discussed further in Section 5). One

benefit of using the Flicker system is that RECAP can

run on commodity systems that are widely available.

able to future authentications.

The registration and breach phases of RECAP in-

volve processing inside the Flicker isolation environ-

ment, because the protocol requires access to informa-

tion that must be kept secret using sealed storage. How-

ever, Flicker does not support direct access to a network

stack. Therefore, software that directly interfaces with

the network stack must run on the untrusted host operat-

ing system. The untrusted portion of RECAP is respon-

sible for launching the Flicker sessions on the user’s and

AS’s platforms. We note that the untrusted code could

choose not to launch the Flicker session. This is equiv-

alent to the availability attack described in Section 8.2,

but more importantly, the untrusted code cannot imper-

sonate trusted code.

The trusted RECAP components that run in the

Flicker environment are responsible for protecting their

state using TPM SEAL and TPM UNSEAL. Many pro-

tocol messages in the registration and breach phases are

passed as input to the Flicker environment, along with

the sealed copy of any sensitive data that may be re-

quired. The trusted code will then unseal the informa-

tion it needs and create its reply message. It will then

output the reply message to be sent over the network,

and seal and output any updated sensitive state before

returning to the host operating system.

Sealed state on the user’s platform includes RU ,

RAS , K−1
U , KAS , and KU−AS . Sealed state on the AS’s

platform includes, for each registered user Ui: RAS ,

RUi
, K−1

AS , KUi
, KAS−Ui

, and the registered users’ en-

dorsement key certificates (real identities) CEndorse−Ui
.

It further includes the entire set of private group signa-

ture keys K−1
GSK

[1 . . . n] (i.e., keys for each registered

member, and unused keys that may be assigned to future

members), and the group manager secret key K−1
GMSK

.

7 Evaluation

Our test machine is an off-the-shelf Lenovo Thinkpad

T400 with a 2.53 GHz Intel Core 2 Duo processor and

2 GB of RAM. It runs Ubuntu 8.10 with Linux ker-

nel 2.6.24. Our current implementation only utilizes one

core, but a more sophisticated implementation could use

multiple CPUs to improve performance. We perform all

of our experiments on this one machine, i.e., we exe-

cute the SP, AS, and user code on the same machine.

This configuration gives a conservative estimate of the

protocol’s end-to-end running time in a real system (ex-

cluding network latency), since only one Flicker session

can be running in isolation at a time.

7.1 Performance

 0

 10000

 20000

 30000

 40000

 50000

 0 100 200 300 400 500 600 700 800

T
h

ro
u

g
h

p
u

t
(a

u
th

s
/h

o
u

r)

Blacklist size

RECAP
PEREA, K=15

BLAC

(a) Anonymous communication throughput at the user.

 0

 10000

 20000

 30000

 40000

 50000

 0 100 200 300 400 500 600 700 800

T
h

ro
u

g
h

p
u

t
(a

u
th

s
/h

o
u

r)

Blacklist size

RECAP
PEREA, K=30

BLAC

(b) Anonymous communication throughput at the service provider.

Figure 5. Comparison of anonymous com

munication throughput at the user (5(a))
and service provider (5(b)) for RECAP,
PEREA [32], and BLAC [31]. Note that data

points for BLAC were extrapolated from
figures in the original publication. We do
not consider the effects of rate limiting in

PEREA and BLAC.

Anonymous Communication Once a contract is es-

tablished, no Flicker sessions are needed to anony-

mously endorse messages by the user. We do not pro-

tect the user’s private group signing key within Flicker

because it is not required for the security of the sys-

tem (although it is the user’s responsibility to safeguard

their keys)5. Consequently, the common-case opera-

tion of RECAP is efficient. On average, message en-

5It is straightforward to put the user’s private group key inside

Flicker at the cost of invoking a Flicker session for every group sig-

nature operation.

dorsement takes 86 ms ± 0.4 ms on the user’s plat-

form, and message verification takes 87 ms ± 0.2 ms

on the SP’s platform. Note that our implementation is

not actually checking for revoked users. Thus, these

measurements are very close to what the O(1) revoca-

tion scheme would yield. In this scheme, a small num-

ber of messages are linkable (see Section 8.4). Fig-

ures 5(a) and 5(b) show that the endorsement through-

put of RECAP scales well with the size of the blacklist

|BL| for both the user and SP. Table 1 compares the

asymptotic and empirical performance measurements.

We use the numbers reported in prior works [31, 32].

Note that PEREA and BLAC both require additional

rate limiting not shown in Figures 5(a) and 5(b), which

limits the throughput between a particular user and SP.

For instance, in PEREA, users must be rate-limited to

k authentications per detection time. For k = 30 and a

detection time of one hour, this yields only 30 authenti-

cations per hour. RECAP does not require rate limiting,

and a particular user and SP can authenticate approxi-

mately 40,000 times per hour.

Clearly, there is a performance-unlinkability trade-

off between our implementation of RECAP and exist-

ing systems such as PEREA and BLAC. RECAP scales

extremely well, however it does so in part by utilizing

a O(1) revocation scheme which favors performance

over perfect unlinkability. Thus, existing systems may

be preferable when performance is not an issue, and

when perfect unlinkability is required. RECAP is bet-

ter suited for services with high rates, and in which a

small number of linked messages does not harm the user.

However, subjective-based systems like PEREA and

BLAC suffer from several factors unrelated to perfor-

mance (which have been already discussed in Section 5),

including the lack of guarantees for well-behaved users

and the difficulty of finding practical identifiers.

Registration We have measured the end-to-end time

it takes for a user to negotiate a contract using the regis-

tration protocol. Although the contract negotiation pro-

tocol takes O(|BL|) time between the AS and SP to

determine if the user is on the blacklist, the total time

is largely dominated by the time it takes to execute the

TPM SEAL and TPM UNSEAL commands. The black-

list would have to be impractically large for the linear

time component of the runtime to have any impact on

the total runtime. In our implementation, contract nego-

tiation takes 7.99± 0.04 s. Although this may seem like

a long time, this protocol only executes when a user reg-

isters to use a new service, or the user and SP negotiate

a new contract.

System Auth. (U) Auth. (SP) Auth. (U) Auth. (SP) Parameters

RECAP 86 ms 87 ms O(1) O(1)

PEREA [32] 5900 ms 160 ms O(k|BL|)† O(k) kSP = 30, kU = 10

BLAC [31] 1450 ms 870 ms O(|BL|) O(|BL|)

Table 1. Comparison of authentication time between RECAP and other systems for reasonable

parameter choices (|BL| = 800). Measurements for PEREA and BLAC are taken from the
relevant works, as we were unable to obtain the source code for these schemes [31, 32]. †:
The amount of computation needed for PEREA is O(k∆|BL|), but the actual time required to

authenticate is O(k|BL|) because of the risk of timing attacks. k is a window parameter used
only in PEREA.

The majority of the time spent during registration is

spent executing the TPM UNSEAL command. Thus, by

batching multiple requests together in a single Flicker

session, the cost of unsealing data can be amortized to

achieve improved throughput. It may also be possible

to replace the use of the TPM’s (relatively slow) sealed

storage with its (relatively fast) non-volatile RAM facil-

ities [23], though our current implementation does not

support TPM NVRAM. We leave this for future work.

Breach Last, we also examine the end-to-end time for

a SP to determine the identity of a misbehaving user.

Our implementation of the breach protocol takes 0.32 ±
0.09 s on average from the time the SP detects a mali-

cious message to the time it receives the user’s identity

from the AS, excluding the time needed to establish the

secure channel as described in Section 4.

7.2 Trusted Computing Base (TCB)

RECAP has a relatively small trusted computing

base that needs to run in the Flicker isolated execution

environment [23]. Table 2 shows the number of lines of

code in the TCB for the user and the AS. The majority

of the code is the PBC cryptographic libraries for im-

plementing group signatures, which also depend on por-

tions of the GNU Multiple Precision Arithmetic Library.

RSA and the symmetric cryptographic functions, as well

as the TPM driver and supporting code for TPM SEAL

and TPM UNSEAL also make significant contributions

to code size. The actual logic for RECAP comprises a

relatively small overall portion of the TCB, suggesting

that formal verification or manual audit are realistic op-

tions. We also note that we have made no effort to strip

unused content from the cryptographic and mathemat-

ical libraries. Significant additional reductions in code

size are readily attainable. Even so, our entire TCB mea-

sures in a few tens of thousands of lines. This is orders

of magnitude less than the TCB for code running on top

of a commodity operating system.

Component Lang. SLoC

Flicker: User .c/.S 953

Flicker: User .h 1590

Flicker: AS .c/.S 1173

Flicker: AS .h 1549

Flicker: Shared

Crypto / TPM .c 4134

Crypto / TPM .h 202

Crypto .c 2698

Crypto .h 1791

PBC .c/.S 11527

PBC .h 1160

GMP .c/.S 4859

GMP .h 5802

Table 2. Lines of code in the trusted com

puting base (TCB) of our implementation
as measured by sloccount [33]. PBC =

pairing based cryptography library. GMP =
GNU multiple precision arithmetic library.

8 Discussion

8.1 RECAP as a Primitive

RECAP provides a mechanism for users to anony-

mously use a service, and thus it is a component in a

larger, overall protocol stack. For example, RECAP

may be run on top of TCP/IP, and as part of a larger

chat protocol.

We only make guarantees about the RECAP com-

ponent. For example, a user who types in their per-

sonal information to a chat service could circumvent

any security otherwise offered from RECAP. Similarly,

the chat protocol could run RECAP on top of TCP/IP,

which may allow chat servers to log IP addresses. Al-

though RECAP does not solve the complete protocol

stack problem, RECAP can be used at each layer of

the stack. For example, Tor is a widely-used network-

level service that is intended to help create network-level

privacy for higher-level services by preventing a net-

work server from learning the IP address of a network

client. Tor could use RECAP to enforce policies regard-

ing proper use. A chat application could run on top of

Tor, and use RECAP to provide contractual anonymity

for chat sessions.

8.2 Attacks

Availability There are several potential attacks against

RECAP. The first potential attack is that the AS could

be powered off or otherwise made unavailable. An AS

that is unavailable cannot reveal the identity of users

who misbehave. There are several possible ways to

counter this problem. An SP can insist upon an AS that

has been designed with high availability in mind, e.g., an

AS with redundant network links, power, etc. Attacks

on availability are present in most protocols, and can

be also addressed by standard methods in fault-tolerant

computing and cryptography.

Small Groups In RECAP, user authentications are

unlinkable among all other registered users in the group,

e.g., the unlinkability set SL (from Section 3.1) is the

set of registered users with the same SP and policy. If

the group is small, and the SP knows this, then the SP

knows that any two requests are likely to be from the

same user. This concern is not unique to RECAP; the

problem of small group sizes also occurs in closely re-

lated works [9, 10, 31, 32]. Because RECAP relies on

trusted computing, it can mitigate the weakness of un-

linkability for small groups: the AS can reveal the num-

ber of active users upon request. Each user can then cre-

ate her own threshold for |SL| (e.g., the user may wish

to be unlinkable among at least 20 users). If the number

of active users is below the user’s threshold, then the ser-

vice should not be used. To the best of our knowledge,

similar systems [31, 32] do not consider this weakness

in their design. Note that in RECAP, a behaving user’s

real identity (e.g., trusted computing identifier) is known

only to the AS, and thus is secret regardless of the num-

ber of active users.

Physical Attacks on TPM TPMs provide strong guar-

antees about programmatic or software-based attacks.

However, TPMs are not designed to withstand a con-

tinued physical attack from a determined adversary. If

a TPM is physically compromised, its security proper-

ties are lost. Since RECAP relies on those properties if

TPMs are used to provide the desired trusted computing

properties, it is important to consider how to mitigate

physical attacks. There are several options. The first op-

tion is to do nothing; users would have to trust that the

AS they use will not be physically compromised. There

may be a popular AS (or several) that is believed to not

be physically compromised. Note that the only require-

ment for this AS is that it should not be physically com-

promised; the operating system, BIOS, human operator,

etc. can all be compromised. Second, RECAP can be

extended to use threshold cryptography [17] such that

a coalition of ASes are needed to reveal a misbehaving

user’s identity. If a user only uses ASes that are con-

trolled by distinct entities, it would be difficult for an

attacker to physically compromise all of the ASes. Last,

the AS could use a secure coprocessor (like the IBM

4758 cryptographic processor [27]) that is designed to

withstand physical attacks, instead of the TPM.

8.3 Policies and Unlinkability

In our explanation of RECAP, we have abstracted

away some of the details of policies. There are two prac-

tical issues that arise in practice. The first problem is the

unlinkability problem, or how to implement policies that

rely on linkability. The second problem is how message

matching should be implemented.

Unlinkability Problem In our description of

RECAP, we have not specified how the SP knows

when a policy is violated. If the policy only deals

with one message, then it is simple: the SP can run

the policy function locally on each message. For

instance, a matching policy that forbids the string

“badword” can be implemented using a function

f(msg1) : if HASWORD(msg1, “badword”) then

VIOLATION else ALLOWED. Since the policy only

needs to match one message, the SP can simply run

HASWORD itself on each message.

However, consider a policy that forbids a user from

including “badword” in one message, and “terrible-

word” in another message; it is okay to send one

message, but not both. Such a policy might look like:

g(msg1,msg2) : if HASWORD(msg1, “badword”)
and HASWORD(msg2, “terribleword”) then

VIOLATION else ALLOWED. Consider what hap-

pens if the SP receives two messages: “. . . badword . . . ”

and “. . . terribleword . . . ”. The SP can easily verify that

the two messages would violate the policy if sent by the

same user, but cannot determine if they were sent by the

same user because of the unlinkability property. We call

this the unlinkability problem.

The obvious implementation of policies with the un-

linkability problem is not always the most efficient. As

one example, threshold policies are commonly used to

prevent spamming, e.g., users should not send more than

k messages per day. Unlinkability prevents the linking

needed for the SP to easily count how many messages

each user sent. The obvious RECAP implementation,

in which the SP sends a large set of messages suspected6

to be created by the same user to the AS, is clearly very

inefficient. A more efficient implementation is to incor-

porate k-times anonymous authentication [28], a cryp-

tographic protocol which provides efficient enforcement

of threshold policies. This allows the SP to efficiently

detect when a user exceeds her threshold without exces-

sive communication with the AS. The RECAP anonym-

ity guarantees still hold since k-TAA provides unlinka-

bility for users who have not exceeded their thresholds

(e.g., broken their contract).

Unfortunately, we are not aware of a more general

solution to the unlinkability problem. For instance, one

useful type of policy that we currently can not imple-

ment efficiently is finite state machine-based policies.

We leave solutions for finite state machine-based poli-

cies and the more general unlinkability problem for fu-

ture work. One potential research direction would be

to allow the SP to run an efficient trusted computing

supported hypervisor which could perform the necessary

linking in a secure, isolated environment [21].

Policy Message Matching As has already been stated,

a contract policy can be thought of as a function

f : {msg1, . . . ,msgn} → {ALLOWED, VIOLATION}.
However, if the SP submits 50 messages to the AS for

a policy that takes only four messages, it is not clear

how the correct messages are assigned to the inputs of

the policy function. Even for this example, there are
(

n
50

)

= 230300 possible assignments of messages, as-

suming order does not matter; clearly, it is not practical

to simply try all combinations.

Instead, when the AS receives signed messages, it

should partition them into sets based on the user that

signed them (using GS OPEN). Then, the policy func-

tion is executed on each set of messages. This means

6For instance, all the messages sent during a high-traffic period.

that, when implemented, policy functions take a set of

messages as input, and should not assume that only

the correct messages are included. For instance, the

matching policy described above could actually be im-

plemented as in Figure 6.

foundone← false

foundtwo← false

for all messages m do

if HASWORD(m, “badword”) then

foundone← true
end if

if HASWORD(m, “terribleword”) then

foundtwo← true
end if

end for

if foundone ∧ foundtwo then

return VIOLATION

else

return ALLOWED

end if

Figure 6. An Example Implementation of a
Matching Policy

8.4 Verifierlocal Revocation

In the group signature scheme we use there is

a trade-off between unlinkability and the runtime of

GS VERIFY in the size of the blacklist [8]. Verifying

that a message signer is not on the blacklist can be per-

formed in O(1) time by the SP if the scheme allows for a

small proportion ǫ of messages signed by the same user

to be linkable (ǫ ≈ memory
#users

), and in O(|BL|) time for

perfect unlinkability (ǫ is negligible).

In the O(1) scheme, ǫ is controlled by the security

parameter k : ǫ = 1
k
. However, the SP must maintain

a precomputed lookup table whose size is O(k ∗ |BL|),
and therefore there is a linkability-memory tradeoff.

As an example, if |BL| = 1024, k = 1024, each

table entry in a precomputed lookup table is about 128

bytes long, and the SP devotes 128MB to create a lookup

table, then less than 0.1% of the messages sent by the

same user can be linked by the SP. In RECAP, the SP,

AS, and users will all know which scheme is used, and

thus will know whether there is a chance messages will

be linkable. Security-conscious users can always insist

on using services that rely on the O(|BL|) algorithm.

9 Related work

Group signature schemes are often motivated by

the need for anonymous authentication [2, 5–8, 13–15].

Group signature schemes typically assume a group man-

ager. The group manager is trusted not to reveal the se-

cret keys of group members. Our system provides a way

of intelligently placing such trust. In RECAP, the AS

becomes the group manager, but all parties can verify

that the manager will act appropriately.

Several researchers have proposed schemes for anon-

ymous authentication that do not involve a trusted

third party (TTP). The most basic of these are e-cash

schemes [3,4,11,26,28,29], and k-times anonymous au-

thentication schemes [28]. Such schemes do not allow

for richer contract policies, and are not appropriate for

many types of Internet-based anonymous authentication.

Further, existing TTP-free schemes are less scalable

than RECAP [9, 10, 31, 32]. Experimental results for

BLAC [31] showed that the SP required 0.46 s of com-

putation when the blacklist only contained 400 entries.

Because an authentication must occur for each unlink-

able message, these systems would not be practical for

many applications. These schemes also do not achieve

the property that anonymity is bound to a contract.

We use trusted computing so that the AS can be ver-

ified correct instead of simply trusted. In particular, we

base our work on Flicker [23]. Datta et al. have proven

that dynamic root of trust systems like Flicker allow

verifiers to make strong conclusions about the software

state on a machine performing an attestation [16]. Oth-

ers have proposed using TPMs to help build anonymous

authentication. For example, Direct Anonymous Attes-

tation [9] can be used to anonymously attest to a soft-

ware stack. However, these systems have slower perfor-

mance, e.g., DAA and EPID require about 2 seconds of

computation on the SP per authentication on a modern

laptop [9, 10]. Further, these systems do not achieve all

the contractual anonymity properties.

10 Conclusion

We introduced the notion of contractual anonymity,

which provides strong guarantees for the user and ser-

vice provider. Unlike other schemes, contractual an-

onymity requires a user and service provider to agree

on a binding, immutable contract before the service is

used. We designed the RECAP protocol to achieve

the contractual anonymity properties, and implemented

and evaluated RECAP to demonstrate that it is scal-

able and practical. Our end-to-end implementation of

RECAP depends on a very small trusted computing

base that excludes the operating system, BIOS, and

DMA-capable devices, thereby enabling RECAP to use

a verifiable third party to enforce contracts. Our ex-

periments demonstrate that RECAP scales well, and is

fully capable of supporting services with realistic mes-

sage rates.

Acknowledgements

This research was supported by CyLab at Carnegie

Mellon under grant DAAD19-02-1-0389 from the Army

Research Office, and by gifts from AMD and Intel. The

views and conclusions contained here are those of the

authors and should not be interpreted as necessarily rep-

resenting the official policies or endorsements, either ex-

press or implied, of ARO, CMU, or the U.S. Govern-

ment or any of its agencies.

We would like to thank our anonymous reviewers

and our shepherd, Scott Coull, for their valuable feed-

back and suggestions. We also thank Bryan Parno and

Thanassis Avgerinos for their comments and fruitful dis-

cussions.

References

[1] Advanced Micro Devices. AMD64 architecture pro-

grammer’s manual: Volume 2: System programming.

AMD Publication no. 24593 rev. 3.14, Sept. 2007.

[2] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A

practical and provably secure coalition-resistant group

signature scheme. In CRYPTO, 2000.

[3] M. H. Au, S. S. M. Chow, and W. Susilo. Short e-cash.

In INDOCRYPT, 2005.

[4] M. H. Au, W. Susilo, and Y. Mu. Constant-size dynamic

k-TAA. In Security and Cryptography for Networks,

2006.

[5] M. Bellare, D. Micciancio, and B. Warinschi. Founda-

tions of group signatures: Formal definitions, simplified

requirements, and a construction based on general as-

sumptions. In EUROCRYPT, 2003.

[6] D. Boneh and X. Boyen. Short signatures without ran-

dom oracles. In EUROCRYPT, 2004.

[7] D. Boneh, X. Boyen, and H. Shacham. Short group sig-

natures. In CRYPTO, 2004.

[8] D. Boneh and H. Shacham. Group signatures with

verifier-local revocation. In CCS, 2004.

[9] E. F. Brickell, J. Camenisch, and L. Chen. Direct anon-

ymous attestation. In CCS, 2004.

[10] E. F. Brickell and J. Li. Enhanced privacy ID: a direct

anonymous attestation scheme with enhanced revocation

capabilities. In Workshop on Privacy in the Electronic

Society, 2007.

[11] J. Camenisch, S. Hohenberger, and A. Lysyanskaya.

Balancing accountability and privacy using e-cash (ex-

tended abstract). In Security and Cryptography for Net-

works, 2006.

[12] J. Camenisch and A. Lysyanskaya. Dynamic accumula-

tors and application to efficient revocation of anonymous

credentials. In CRYPTO, 2002.

[13] J. Camenisch and A. Lysyanskaya. Signature schemes

and anonymous credentials from bilinear maps. In

CRYPTO, 2004.

[14] J. Camenisch and M. Stadler. Efficient group signa-

ture schemes for large groups (extended abstract). In

CRYPTO, 1997.

[15] D. Chaum and E. van Heyst. Group signatures. In EU-

ROCRYPT, 1991.

[16] A. Datta, J. Franklin, D. Garg, and D. Kaynar. A logic of

secure systems and its applications to trusted computing.

In IEEE Symposium on Security and Privacy, 2009.

[17] Y. Desmedt and Y. Frankel. Threshold cryptosystems.

In CRYPTO, 1989.

[18] J. R. Douceur. The sybil attack. In International Work-

shop on Peer-To-Peer Systems, 2002.

[19] D. Grawrock. Dynamics of a Trusted Platform: A Build-

ing Block Approach. Intel Press, 2008.

[20] Intel Corporation. Trusted eXecution Technology – mea-

sured launched environment developer’s guide. Docu-

ment number 315168005, 2008.

[21] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,

D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,

M. Norrish, R. Kolanski, T. Sewell, H. Tuch, and S. Win-

wood. seL4: Formal verification of an OS kernel. In

Proceedings of ACM SOSP, 2009.

[22] B. Lynn, H. Shacham, and J. Cooley. PBC sig

group signature library. [Online]. Available: http:

//crypto.stanford.edu/pbc/sig. [Accessed:

May 1, 2009].

[23] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and

H. Isozaki. Flicker: An execution infrastructure for TCB

minimization. In EuroSys, 2008.

[24] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.

Handbook of Applied Cryptography. 1997.

[25] J. C. Mitchell, V. Shmatikov, and U. Stern. Finite-state

analysis of SSL 3.0. In USENIX Security Symposium,

1998.

[26] L. Nguyen and R. Safavi-Naini. Dynamic k-times anon-

ymous authentication. In Applied Cryptography and

Network Security, 2005.

[27] S. W. Smith and S. Weingart. Building a high-

performance, programmable secure coprocessor. In

Computer Networks, 1998.

[28] I. Teranishi, J. Furukawa, and K. Sako. k-times anon-

ymous authentication (extended abstract). In ASI-

ACRYPT, 2004.

[29] I. Teranishi and K. Sako. k-times anonymous authenti-

cation with a constant proving cost. In Public Key Cryp-

tography, 2006.

[30] Trusted Computing Group. Trusted platform module

main specification, Part 1: Design principles, Part 2:

TPM structures, Part 3: Commands. Version 1.2, Re-

vision 103., 2007.

[31] P. P. Tsang, M. H. Au, A. Kapadia, and S. W. Smith.

Blacklistable anonymous credentials: blocking misbe-

having users without TTPs. In CCS, 2007.

[32] P. P. Tsang, M. H. Au, A. Kapadia, and S. W. Smith.

PEREA: towards practical TTP-free revocation in anon-

ymous authentication. In CCS, 2008.

[33] D. A. Wheeler. Linux kernel 2.6: It’s worth more! [On-

line]. Available: http://www.dwheeler.com/

essays/linux-kernel-cost.html. [Accessed:

May 1, 2009].

[34] XySSL Developers. XySSL cryptographic library. [On-

line]. Available: http://polarssl.org.

