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Abstract. We are now in the post-PC era, yet our mobile devices are insecure.
We consider the different stake-holders in today’s mobile device ecosystem, and
analyze why widely-deployed hardware security primitives on mobile device
platforms are inaccessible to application developers and end-users. Wesystem-
atize existing proposals for leveraging such primitives, and show that they can
indeed strengthen the security properties available to applications and users, all
without reducing the properties currently enjoyed by OEMs and network carriers.
We also highlight shortcomings of existing proposals and make recommendations
for future research that may yield practical, deployable results.

1 Introduction
We are putting ever more trust in mobile devices. We use them for e-commerce and
banking, whether through a web browser or specializedapps. Such apps hold high-
value credentials and process sensitive data that need to beprotected. Meanwhile, mo-
bile phone OSes are untrustworthy. While in principle they attempt to be more secure
than desktop OSes (e.g., by preventing modified OSes from booting, by using safer
languages, or by sandboxing mechanisms for third-party apps such as capabilities), in
practice they are still fraught with vulnerabilities.

Mobile OSes are as complex as desktop OSes. Isolation and sandboxing provided
by the OS is routinely broken, c.f. Apple iOS jail-breaking by clicking a button on
a web page[11, 42]. Mobile OSes often share code with open-source OSessuch as
GNU/Linux, but often lag behind in applying security fixes, meaning that attackers
need only look at recent patches to the open-source code to find vulnerabilities in the
mobile device’s code. Therefore, there is a need for isolation and security primitives
exposed to application developers in such a way that they need not trust the host OS.

We argue that this problem is severe enough to have garnered significant attention
outside of the security community. Demand for mobile applications with stronger se-
curity requirements has given rise to add-on hardware with stronger security properties
(§2). However, many current mobile devices already have hardware support for isolated
execution environments and other security features. Unfortunately, these features are
not made available to all parties who may benefit from their presence.

Today’s mobile device hardware and software ecosystem consists of multiplestake-
holders, primarily comprising the OEM (handset manufacturer), telecommunications
provider or carrier, application developers, and the device’s owner (the human user).
Carriers typically also serve in the role of platform integrator, customizing an OEM’s



handset with additional features and branding (typically via firmware or custom apps).
To date, security properties desirable from the perspectives of application developers
and users have been secondary concerns to the OEMs and carriers [10, 33, 45]. The
historically closed partnerships between OEMs and carriers have lead to a monolithic
trust model within today’s fielded hardware security primitives. Everything “inside” is
assumed to be trustworthy, i.e., the software modules executing in the isolated envi-
ronment often reside in each other’s trusted computing base(TCB). As long as this
situation persists, OEMs and carriers will not allow third-party code to leverage these
features. Only in a few cases, where the OEM has partnered with a third party, are these
features used to protect theuser’sdata (c.f.§2, Google Wallet).

We approach this scenario optimistically, and argue that there is room to meet the
needs of application developers and users while adding negligible cost. We thus define
the principal challenge for the technical community:to present sound technical evi-
dence that application developers and users can simultaneously benefit from hard-
ware security features without detracting from the security properties required for
the OEMs and carriers.1 Our goal in this paper is to systematize deployed (or readily
available) hardware security features, and to provide an extensive and realistic evalu-
ation of existing (largely academic) proposals for multiplexing these features amongst
all stake-holders.

We proceed in§3 by defining a set of security features that may be useful for appli-
cation developers that need to process sensitive data. Our focus is on protecting secrets
belonging to theuser, such as credentials used to authenticate to online services and
locally cached data.

We next provide an overview of hardware security features available on today’s mo-
bile platforms (§4). We show that hardware security features that can providethe desired
properties to application developers are prevalent, but they are typically not accessible
in COTS devices’ default configurations.

We then move on to evaluate existing proposals (given the hardware security features
available on mobile devices) for creating a trustworthy execution environment that is
able to safely run sensitive applications that are potentially considered untrustworthy
by other stake-holders (§5). We show that multiplexing these secure execution envi-
ronments for mutually-distrusting sensitive applications is quite possible if the threat
model for application developers and users is primarily software-based attacks (§6).

Finally (§7), we provide an end-to-end analysis and recommendations for the current
best practices for making the most of mobile hardware-basedsecurity features, from
the points of view of each stake-holder. Unfortunately, without firmware or software
changes by OEMs and carriers, individual application developers today have little op-
portunity to leverage the hardware security primitives in today’s mobile platforms. The
only real options are either to partner with a mobile platform integrator, to distribute
a customized peripheral (e.g., a smart-card-like device that can integrate with a phone,
such as a storage card with additional functionality), or topurchase unlocked devel-

1 We wish to distinguish this challenge from proposals that OEMs increase theirhardware costs
by including additional hardware security features that are exclusivelyof interest to application
developers and users. Our intention in this paper is to emphasize practicality, and thus define
such proposals to be out of scope.



opment hardware. We provide recommendations for OEMs and carriers for how they
can make hardware-based security capabilities more readily accessible to application
developers without compromising the security of their existing uses.

2 Demand for Applications Requiring Hardware Security

Does providing third-party developers with access to hardware-supported security fea-
tures make sense for the OEMs or carriers? This is an important consideration for an
industry where a few cents in cost savings can be the decidingfactor for features. We
show that there are many applications on mobile devices thatrequire strong security
features, and that must currently work around the lack of those features. Being forced
to deal with these work-arounds stifles the market for security-sensitive mobile appli-
cations, and endangers the security of the applications that are deployed anyways.

Google Wallet2 allows consumers to use their mobile phones as a virtual wallet. The
application stores users’ payment credentials locally, which are then used to make trans-
actions via near field communication (NFC) with point-of-sale (POS) devices. To store
the users’ credentials securely, Wallet relies on a co-processor called a Secure Element
(SE) which provides isolated execution (§3), secure storage (§3), and a trusted path (§3)
to the on-board NFC radio. Unfortunately, the SE only runs code that is signed by the
device manufacturer. This may be because the SE lacks the ability to isolate authorized
modules from each-other, or it may simply be considered a waste of time. As a result,
developers without Google’s clout will not be able to leverage these capabilities for their
own applications. There is evidence that Apple has similar plans for its products; they
recently published a patent for an embedded SE with space allocated for both a Univer-
sal Subscriber Identity Module (USIM) application and “other” applications [41].

Services such as Square and GoPay allow merchants to complete credit card trans-
actions with their mobile device using an application and a magnetic stripe reader [34].
While Square’s security policies3 indicate that they do not store credit card data on
the mobile device, the data does not appear to be adequately protected when it passes
through the mobile device. Researchers have verified that the stripe reader does not
protect the secrecy or integrity of the read-data [37]. Thisimplies that malware on the
mobile device could likely eavesdrop on credit-card data for swiped cards or inject
stolen credit-card information to make a purchase [37].

These applications could benefit greatly from the hardware-backed security features
we describe in§3. A trusted path (§3) could enforce that the intended client applica-
tion has exclusive access to the audio port (with which the card readers interface), thus
protecting the secrecy and integrity of that data from malware. They could also ben-
efit greatly from a remote attestation mechanism (§3), which the servers could use to
ensure that received-data is actually from the authorized client-application, and that it
used a trusted-path to the reader, thus helping to ensure that the physical credit card was
actually present. OEMs could provide a more tightly integrated experience for devel-
opers, and avoid potential security vulnerabilities by opening up pre-existing hardware
security primitives to application developers.

2 http://www.google.com/wallet/how-it-works-security.html
3 https://squareup.com/security



3 Desired Security Features

Here we describe a set of features intended to enable secure execution on mobile de-
vices. This can be interpreted as the wish-list for a security-conscious application devel-
oper. The strength of these features can typically be measured by the size, complexity,
and attack surface of the components that must be relied uponfor a given security prop-
erty to hold. This is often referred to as thetrusted computing base(TCB). On many
systems, the OS provides security-relevant APIs for application developers. However,
this places the OS in the TCB, meaning that a compromised OS voids the relevant se-
curity properties. We briefly discuss whether and how the security features below are
provided on today’s mobile platforms, and some strategies for providing these proper-
ties to applications without including the OS in the TCB.
Isolated Execution. Isolated execution gives the application developer the ability to
run a software module in complete isolation from other code.It provides secrecy and
integrity of that module’s code and data atrun-time. Today’s mobile OSes provide
process-based isolation to protect applications’ addressspaces and other system re-
sources. However, these mechanisms are circumventable when the OS itself is com-
promised. To provide isolated execution that does not depend on the operating system,
some alternative execution environment not under control of the OS is required. Such
an environment could be provided by a layer running under theOS on the same hard-
ware (i.e., a hypervisor), or in a parallel environment (such as a separate coprocessor).
We examine some candidate isolated execution environmentsand their suitability for
mobile platforms in§5. Regarding today’s mobile platforms, the Meego Linux distribu-
tion for mobile devices does include provisions for isolated execution. Meego’s Mobile
Simplified Security Framework (MSSF) implements a trusted execution environment
(TrEE) that is protected from the OS [29]. However, this environment is not open to
third party developers.
Secure Storage.Secure storage provides secrecy, integrity, and/or freshness for a soft-
ware module’s dataat rest (primarily when the device is powered off, but also under
certain conditions based upon which software has loaded). The most common exam-
ple demonstrating the need for secure storage is access credentials, such as a cached
password or a private asymmetric key. Most mobile OSes provide this property at least
using file system permissions, which are enforced by the operating system. However,
this can be circumvented by compromising the OS or by removing the storage media
and accessing it directly.

A stronger form of secure storage can be built using a storagelocation that is physi-
cally protected, and with access control implemented independently of the OS – called
a root of trust for storage, or RTS. A RTS can be used to bootstrap a larger secure stor-
age mechanism, usingsealed storage. The sealed storage primitive uses a key protected
by the RTS to encrypt the given data, and to protect the authenticity of that data and of
attached meta-data. The metadata includes an access-control-policy for which code is
authorized to request decryption (e.g., represented as a hash over the code), and poten-
tially other data such as which software module sealed the data in the first place. Sealed
data (ciphertext) can then be stored on an unprotected storage device.

Symbian and Meego make use of protected memory and sealed storage [29]. MSSF
uses keys kept in its Trusted Execution Environment (TrEE) (§3) to protect the integrity



of application binaries, and to provide a sealed storage facility, which is available to
third party developers [29]. While this offers protection against offline attacks, since
third party applications are not allowed to execute in the TrEE, data protected by this
mechanism is vulnerable to online attacks via a compromisedOS. Recent versions
of iOS combine a user-secret with a protected device-key to implement secure stor-
age [3]. However, the device-key does not appear to be access-controlled by code iden-
tity, meaning that an attacker can defeat this mechanism if he is able to obtain the user
secret, e.g., via malware, or via performing an online brute-force attack [17, 25]. An-
droid offers an AccountManager API [2]. The model used by this API supports code
modules that perform operations on the stored credential rather than releasing them
directly, which would make it amenable to a model with sealedstorage and isolated ex-
ecution. Unfortunately, it appears that the data is currently stored in plaintext, and can
be retrieved via direct access to the storage device or by compromising the operating
system [1,50].
Remote Attestation.Remote attestation allows remote parties to verify that a particular
message originated from a particular software module. For an application running on a
normal OS, the attestation would necessarily include a measurement of the OS kernel,
which is part of that TCB, and of the application itself. A remote party, such as an online
banking service, could use this information, if it knew a list of valid OS kernel identities
and a list of valid client banking-app identities, to ensurethat the system had booted a
known-good kernel, and that the OS had launched a known-goodversion of the client
banking app. Remote attestations are more meaningful when the TCB is relatively small
and stable. In the example of a banking application, if a critical component of the app
ran as a module in an isolated execution environment with a remote-attestation capa-
bility, then the attestation would only need to include a measurement of the smaller
isolated execution environment code, and of the given module. Not only would it be
easier to keep track of a list of known-good images but the attestation would be more
meaningful because the isolated execution environment is presumed to be less suscep-
tible to run-time compromise. This is important because theattestation only tells the
verifier what code wasloaded; it would not detect if a run-time exploit overwrote that
code with unauthorized code.

Attestation mechanisms are typically built using a privatekey that is only accessible
by a small TCB (§3) and kept in secure storage (§3). A certificate issued by a trusted
party, such as the device manufacturer, certifies that the corresponding public key be-
longs to the device. One or more platform configuration registers store measurements
of loaded code. The private key can then be used to generate signed attestations about
its state or the state of the rest of the system. Some forms of remote attestation are im-
plemented and used on today’s mobile platforms [29]. However, as far as we know, no
such mechanisms are made available to arbitrary third-party developers.
Secure Provisioning.Secure provisioning is a mechanism to send data to aspecific
software module, running on aspecific device, while protecting that data’s secrecy and
integrity. This is useful for migrating data between a user’s devices. For example, a
user may have a credential database that he wishes to migrateor synchronize across
devices while ensuring that only the corresponding credential-application running on
the intended destination device will be able to access that data. One way to build a



secure provisioning mechanism is to use remote attestation(§3) to attest that a public
encryption key belongs to a particular software module running on a particular device.
The sender can then use that key to protect data to be sent to the target software mod-
ule on the target device. Some of today’s mobile platforms implement mechanisms to
authenticate external information from the hardware stake-holders (e.g., software up-
dates), with the hash of the public portion of the signing keystored immutably on the
device [29]. Other secure provisioning mechanisms are likely implemented and used by
device manufacturers to implement features such as digitalrights management. As far
as we know, however, secure provisioning mechanisms are notavailable for direct use
by arbitrary third-party developers on mobile platforms.
Trusted Path. Trusted path protects authenticity, and optionally secrecy and availabil-
ity, of communication between a software module and a peripheral (e.g., keyboard or
touchscreen) [18,24,32,46,52]. When used with human-interface devices, this property
allows a human user to ascertain precisely the application with which she is currently
interacting. With full trusted path support, malicious applications that attempt to spoof
legitimate applications by creating identical-looking user interfaces will conceivably
become ineffective. Building secure trusted paths is a challenging problem. Zhou et. al.
propose a trusted path on commodity x86 computers with a minimal TCB [52]. Their
system enables users to verify the states and configurationsof one or more trusted-paths
using a simple, secret-less, hand-held device. In principle, many mobile platforms also
support a form of trusted path, but the TCB is relatively large and untrustworthy. For
example, theHomebutton on iOS and Android devices constitutes asecure attention
sequencethat by design uncircumventably transfers control of the user interface to the
OS’s “Home” screen. Once there, the user can transfer control to the desired applica-
tion. However, the TCB for such mechanisms includes the entire OS and third-party
apps. The OS can be removed from the TCB of such trusted paths by preventing the
OS from communicating directly with the device and running the device driver in an
isolated environment. This requires the platform to support a low-level access-control
policy for access to peripherals. ARM’s TrustZone extensions facilitate this type of
isolation (§4.1).

4 Available Hardware Primitives

In this section we discuss currently-available hardware security primitives with a focus
on existing smartphone and tablet platforms. As the vast majority of these platforms are
built for the ARM architecture4, we first present a generic ARM platform hardware and
security architecture, focusing our discussion on platform hardware components that
help realize the features discussed in§3. We then identify design gaps and implementa-
tion challenges in off-the-shelf mobile devices that prevent third-party application de-
velopers from fully realizing the desired security properties. Finally, we provide details

4 Intel ATOM [26] line of embedded processors are based on commodityx86 architecture and
are also targetted towards smartphone and tablet platforms. While a few models contain secu-
rity features such as hardware virtualization, the ATOM System-on-Chip (SoC) that is targetted
at smartphone platforms currently does not seem to include such support [27]. We therefore
focus our attention on the more widely spread ARM architecture and its security extensions.



Fig. 1.Generic ARM platform hardware and security architecture.

of inexpensive mobiledevelopmentplatforms with myriad security features, to serve as
references against which to compare mass-market devices.

ARM’s platform architecture comprises the Advanced Microcontroller Bus Archi-
tecture (AMBA) and different types of interconnects, controllers and peripherals. ARM
calls these the “CoreLink”, which has four major components(Figure 1).Network in-
terconnectsare the low-level physical on-chip interconnection primitives that bind var-
ious system components together. AMBA defines two basic types of interconnects: (i)
the Advanced eXtensible Interface (AXI) – a high performance master and slave in-
terconnect interface, and (ii) the Advanced Peripheral Bus(APB)—a low-bandwidth
interface to peripherals.Memory controllerscorrespond to the predominant memory
types: (i) static memory controllers (SMC) interfaced withSRAM, and (ii) dynamic
memory controllers (DMC) interfaced with DRAM.System controllersinclude the:
(i) Generic interrupt controller (GIC)—for managing deviceinterrupts, (ii) DMA con-
trollers (DMAC)—for direct memory access by peripheral devices, and (iii) TrustZone
Address Space Controller (TZASC) and TrustZone Memory Adapter (TZMA)—for
partitioning memory between multiple “worlds” in a split-world architecture (§4.1).
System peripheralsinclude LCDs, timers, UARTs, GPIO pins, etc. These peripherals
can be further assigned to specific “worlds”). We now proceedto discuss the above
components in the context of each of the security features described in§3.
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Fig. 2. ARM Isolated Execution Hardware Primitives. Split-world-based isolation enables both
secure and normal processor worlds. Virtualization-based isolation adds a higher-privileged layer
for a hypervisor in the normal world.

4.1 Isolated Execution

Multiple hardware primitives exist for isolated executionon ARM architecture devices
today. ARM first introduced their TrustZone Security Extensions in 2003 [4], enabling
a “two-world” model, whereby both secure and non-secure software can coexist on the
same processor. ARM recently announced hardware support for virtualization for their
Cortex A15 CPU family [8]. These extensions enable more traditional virtualization
solutions in the form of hypervisors or virtual machine monitors [39].
Split-World-based Isolated Execution.ARM’s TrustZone Security Extensions [5] en-
able a single physical processor core to safely and efficiently execute code in two
“worlds”—the secure worldfor security sensitive application code and thenormal
world for non-secure applications (Figure 2). CPU state is bankedbetween both worlds;
the secure-world can access all normal-world state, but notvice-versa. A new processor
mode, called themonitor mode, supports context switching between the secure-world
and the normal-world. The monitor mode software is responsible for context-switching
CPU state that is not automatically banked.
Memory Isolation. ARM’s TrustZone Security Extensions split CPU state into two dis-
tinct worlds, but they alone cannot partition memory between the two worlds. Memory
isolation is achieved using a combination of TrustZone-aware Memory Management
Units (MMU), TrustZone Address Space Controllers (TZASC),TrustZone Memory
Adapters (TZMA), and Tightly Coupled Memory (TCM).

A TrustZone-aware MMU provides a distinct MMU interface foreach processor
world, enabling each world to have a local set of virtual-to-physical memory address
translation tables. The translation tables have protection mechanisms which prevent the
normal-world from accessing secure-world memory. The TZASC interfaces devices
such as Dynamic Memory Controllers (DMC) to partition DRAM into distinct memory
regions. The TZASC has a secure-world-only programming interface that can be used
to designate a given memory region as secure or normal. The TZMA provides similar
functionality for off-chip ROM or SRAM. With a TZMA, ROM or SRAM can be par-
titioned between the two worlds. Tightly Coupled Memory (TCM) is memory that is
in the same physical package as the CPU, so that physical tampering with the external
pins of an integrated circuit will be ineffective in trying to learn the information stored
in TCM. Secure-world software is responsible for configuring access permissions (se-
cure vs. normal) for a given TCM block.



Peripheral isolation. Peripherals in the ARM platform architecture can be designated
assecureor normal. ARM’s “CoreLink” architecture connects high-speed system de-
vices such as the CPU and memory controllers using the Advanced eXtensible Inter-
face (AXI) bus [7]. The rest of the system peripherals are typically connected using
the Advanced Peripheral Bus (APB). The AXI-to-APB bridge device is responsible for
interfacing the APB interconnects with the AXI fabric and contains address decode
logic that selects the desired peripheral based on the security state of the incoming AXI
transaction; the bridge rejects normal-world transactions to peripherals designated to
be used by the secure-world. A TrustZone AXI-to-APB bridge can include an optional
software programming interface that allows dynamic switching of the security state of
a given peripheral. This can be used for sharing a peripheralbetween both the secure
and normal worlds.
DMA Protection. Certain peripherals (e.g., LCD controllers and storage controllers)
can transfer data to and from memory using Direct Memory Access (DMA), which is
not access-controlled by the AXI-to-APB bridge. A TrustZone-aware DMA controller
(DMAC) supports concurrent secure and normal peripheral DMA accesses, each with
independent interrupt events. Together with the TZASC, TZMA, GIC, and the AXI-to-
APB bridge, the DMAC can prevent a peripheral assigned to thenormal-world from
performing a DMA transfer to or from secure-world memory regions.
Hardware Interrupt Isolation. As peripherals can be assigned to either the secure or
normal world, there is a need to provide basic interrupt isolation so that interrupts from
secure peripherals are always handled in secure world. Hardware interrupts on the cur-
rent ARM platforms can be categorized into: IRQ (normal interrupt request) and FIQ
(fast interrupt request). The Generic Interrupt Controller (GIC) can configure interrupt
lines as secure or normal and enables secure-world software(in monitor mode) to selec-
tively trap such system hardware interrupts. This enables flexible interrupt partitioning
models. For example, IRQs can be assigned for normal-world operations and FIQs for
secure-world operations. The GIC hardware also includes logic to prevent normal-world
software from modifying secure interrupt line configurations. Thus, secure world code
and data can be protected from potentially malicious normal-world interrupt handlers,
but TrustZone by itself is not sufficient to implement devicevirtualization.
Virtualization-based Isolated Execution.ARM’s Virtualization Extensions provide
hardware virtualization support to normal-world softwarestarting with the Cortex A15
CPU family [8]. The basic model for a virtualized system involves a hypervisor, that
runs in a new normal-world mode called Hyp mode (Figure 2). The hypervisor is re-
sponsible for multiplexing guest OSes, which run in the normal world’s traditional OS
and user modes. Note that software using the secure world is unchanged by this model,
as the hypervisor has no access to secure world state. The hypervisor can optionally
trap any calls from a guest OS to the secure world. As hardware-supported virtualiza-
tion architectures have been studied for over four decades [39], we elide further detail
on the ARM specifics.

4.2 Secure Storage

Current ARM platform specifications do not include a root of trust for long-term se-
cure storage. Platform hardware vendors are free to choose and implement a propri-
etary mechanism if desired. The Secure Element (SE) is one such proprietary solution



for establishing a root of trust for mobile devices. SEs provide storage and process-
ing of digital credentials and sensitive data in a physically separate protected module
such as a smart-card, thereby reducing the physical attack surface. Embedded SEs are
commonly used to provide security for near field communication (NFC) applications
such as automated access control, ticketing, and mobile payment systems. For example,
Google Wallet uses embedded secure elements to store and manage encrypted payment
card credentials,5 so that they are never available to a compromised mobile device OS.
Development platforms such as the FreeScale i.MX53 (§4.7) and Texas Instruments
M-Shield (§4.7), employ an embedded SE to provide a tamper-resistant secure execu-
tion and storage environment. Giesecke & Devrient and Tyfone are notable vendors
currently selling removable SEs. Using these, third-partydevelopers can develop appli-
cations against a single platform-independent interface.However, removable SEs are
readily physically separated from the mobile device (e.g.,the SE may be independently
lost or stolen).

4.3 Remote Attestation

A remote attestation primitive relies on a private key that is exclusively accessible by a
small TCB, and the presence of one or more registers to store measurements (crypto-
graphic hashes) of the loaded code (§3). A vast majority of off-the-shelf mobile devices
include support for secure or authenticated boot. The boot-ROM is a small immutable
piece of code which has access to a public key (or its hash) andauthenticates boot
components that are signed by the device authority’s private key. Platforms such as the
FreeScale i.MX53 (§4.7) and Texas Instruments’ M-Shield (§4.7) contain secure on-
chip keys (implemented using e-fuses) that are one-time-programmable keys accessible
only from inside a designated secure environment for such authentication purposes.
However, none of the hardware platforms, to the best of our knowledge, support plat-
form registers to accumulate measurements of the loaded code. In principle, this support
could be added in software by leveraging the hardware isolation primitives and secure
storage described previously.

4.4 Secure Provisioning

Current mobile platforms implement mechanisms to authenticate external information,
with the hash of the public portion of the signing key stored immutably on the de-
vice [29]. However, such capabilities are currently restricted to OEMs or carriers (e.g.,
software updates, assigning different identities to the device) and remain unavailable
for use by arbitrary third-party developers.

4.5 Trusted Path

Platforms such as M-Shield (§4.7) provide basic hardware primitives to realize a trusted
path. A special chip interconnect allows peripheral and memory accesses only by the
designated secure environment, and secure DMA channels to guarantee data confiden-
tiality from origin to destination. Such capabilities are being used for DRM (video
streaming) on certain off-the-shelf mobile devices [22], but it remains unclear if they
are available to third-party developers.

5 http://www.google.com/wallet/faq.html



4.6 Design gaps and Challenges

Having described the ARM hardware platform and security architecture and how the
different components interplay to provide various hardware security features, we now
identify design gaps and implementation challenges in off-the-shelf mobile devices that
prevent third-party application developers from fully realizing the desired security fea-
tures.

ARM’s hardware platform architecture is only a specification, leaving the OEMs
free to customize a specific implementation to suit their business needs. This means that
OEMs could leave out components whose absence can severely constrain some security
features and in some cases even break feature correctness. For example, the absence of
a TZASC (and/or TZMA) leaves main memory (DRAM/SRAM) accessible to both
the secure and normal worlds. The only way to enforce memory isolation between the
worlds is to use TCM (§ 4.1), which has a very limited size (typically 16-32 KB).
Similarly, DMA protection requires a TrustZone-aware DMA controller, GIC, TZASC
(and/or TZMA), and a TrustZone-aware AXI-to-APB bridge. The absence of one of
these components will result in the DMA protection being ineffective.

Unfortunately, most of today’s off-the-shelf mobile devices include a single set of
devices shared between the secure and normal worlds and do not include all the re-
quired components to fully realize the hardware security primitives described previ-
ously. This results in a huge gap between functional specification and device imple-
mentation. OEMs and carriers are generally not concerned with DMA-style attacks or
including a TZASC (and/or TZMA) because their physical security requirements al-
ready force them to process sensitive data in TCM or other device-specific isolated
environments unreachable via DMA.

Many OEMs explicitly lock-out platform security features.For example, TrustZone
secure-world is enabled or disabled by a single bit in the system configuration regis-
ter [5]. Once this bit is set to 1 (disabling secure-world), it can no longer be cleared
until a device reset. In many off-the-shelf mobile devices such as the Droid, Droid-X,
BeagleBoard, and some Gumstix platforms, this bit is set to 1by the boot-ROM code,
in essence allowing only normal-world operations.

From a developer’s perspective, an abundance of documentation and open-source
(or low-cost) development tools are two key factors that facilitate device and plat-
form adoption. While ARM offers decent documentation and development tools (Fast-
Model/RVDS/RTSM) to leverage the hardware security primitives, the cost of the tools
(outside of academia) is greater than cost of a typical device. We believe this to be a
significant reason why the open-source and hobbyist community has not rallied around
ARM’s tools.

4.7 Platform Case Studies

We now describe readily available, inexpensive development platforms that come with
a host of interesting security features. These examples serve to show that there is no
shortage ofsecurity potentialin mobile device platforms.

The FreeScale i.MX53 is a $149 MSRP development board with anARM Cortex A8
CPU and many security features. The i.MX53 supports a High Assurance Boot (HAB)
process where the system boot-ROM prevents the platform from executing unautho-



rized software during the boot sequence. The i.MX53 Security Controller provides a
small Secure RAM (self-clearing on tamper detection or software deallocation) area for
secure cryptographic key storage. The i.MX53 Security Accelerator (SAHARA) pro-
vides a dedicated cryptographic engine for importing data to or exporting data from
Secure RAM. The SAHARA has a dedicated TrustZone-aware DMA controller and
accelerates several cryptographic functions such as AES, DES, HMAC, SHA-256 etc.

Texas Instruments M-Shield mobile security technology [9]is a system-level security
solution with hardware and software components. The M-Shield secure environment
has a secure state machine (SSM) as well as secure ROM and RAM.The SSM enforces
isolationby enforcing the system’s security policy rules during secure environment en-
try, execution, and exit. M-Shield provides one-time programmable on-chip keys (using
e-fuses) that are accessible only from inside the secure environment, and are typically
used for authentication and encryption. M-Shield also provides hardware cryptographic
accelerators, and hardware primitives fortrusted path. The platform exposes the Trust-
Zone API (§6) for managing secure services. According to the white-paper [9], there
are associated middleware and developer APIs for developing such secure services.

5 Isolated Execution Environments
An execution environment that is isolated from the device operating system (§3) is per-
haps the most critical security feature described in§3. Such an environment can be used
to run secure services that multiplex hardware-backed security features, such as secure
storage (§3), amongst the various stake-holders, including third party application de-
velopers. Greater flexibility can be offered to third-partydevelopers by allowing them
to run modules inside that environment. While this increasesthe size and complex-
ity of the isolated environment’s trusted-computing-base, such an environment remains
smaller and more trustworthy than a full-featured OS. The available isolated-execution
hardware primitives (§4.1) offer several options for implementing isolated execution
environments. We consider two high-level approaches: either using a parallel execution
environment, or multiplexing a single execution environment using a hypervisor.

5.1 Parallel Isolated Execution

One strategy for isolated execution is to put sensitive codein a distinct, parallel envi-
ronment. As described in§4.1, current ARM platforms that support TrustZone offer a
mechanism by which secure software can execute in isolationwithin a special processor
world. Several research proposals [14–16,30,48,51] employ TrustZone to achieve iso-
lation and provide a subset of the security properties discussed in§3. Other approaches
make use of a physically separate protected module such as a smart-card to achieve
isolation [12,13,43]. We provide a detailed discussion of the above frameworks in§6.

5.2 Hypervisors

A hypervisoris a microkernel that can run other OSes as deprivileged processes. OSes
can run unmodified if the environment provided by the hypervisor (optionally with help
from some of its deprivileged services) matches the physical hardware expected by that
OS. Otherwise we say that the OS must bepara-virtualized—modified to run in the
environment that is provided by the hypervisor. A hypervisor can be used to implement
an execution environment that is isolated from the main OS byrunning the operating



system as one process (a virtual machine), and by running themodules to-be-isolated
as separate processes.

We now briefly summarize some noteworthy existing ARM hypervisor projects. Cur-
rent closed-source hypervisors include Winter [48], seL4 [28], OKL4 [35], and IN-
TEGRITY [23]. Winter outlines an approach to merge TCG-style Trusted Computing
concepts with ARM TrustZone technology in order to build an open Linux-based em-
bedded trusted computing platform. The seL4 project gainednotoriety in 2009 when
they announced a formally verified microkernel for the ARM architecture. OKL4 is
a microkernel-based embedded hypervisor with a small footprint and CPU support to
target mobile telephony. The INTEGRITY multivisor uses a security kernel to provide
domain isolation and is targeted at in-vehicle infotainment and next-generation mobile
devices. Codezero6, XenARM [49], and KVMARM7 are some noteworthy open-source
hypervisor initiatives. The CodeZero project proposes a hypervisor based on the L4 mi-
crokernel, written in C/C++ in under 10K SLOC. Samsung has supported the Xen hy-
pervisor project to produce an open-source variant of the Xen hypervisor for the ARM
architecture. A port is underway of the popular Linux KVM (Kernel Virtual Machine)
to the ARM architecture.

Hypervisor frameworks potentially hold value for all stake-holders (OEMs, carriers
developers, and users). From an OEM perspective, secure hypervisor frameworks allow
multiplexing security-critical baseband functionality on the same processor as popular
unmodified OSes and user-facing applications, thereby reducing the cost of materials
in a smartphone [35, 38]. From a developer stand-point, hypervisor frameworks allow
creation of custom security applications that can benefit from improved isolation (e.g.,
mobile banking and payments or anti-malware). From a user’sperspective, a hypervisor
framework may enable simultaneous execution of different OSes, offering a rich set of
security features and execution environments on a single mobile device. Hypervisors
are deployed in custom (OEM- and carrier-specific) environments on roughly 1 bil-
lion off-the-shelf mobile devices [35, 38]. These can be, and likely already are, used to
run security-critical services in isolation from a fully-featured OS running on the same
CPU. Unfortunately, we observe that this is done transparently to the user and to third-
party developers. These devices do not provide an open API tothird-party developers to
run their own modulesin an isolated execution environment provided by the hypervisor.

6 API Architectures

Having discussed the hardware primitives available on today’s mobile platforms in§4,
and how those can be used to implement reduced-TCB isolated execution environments
in §5, we now discuss potential application programmer interfaces (APIs) that those
isolated execution environments may expose to developers.We distinguish between two
types of APIs:App-IEEAPIs andModule-IEEAPIs.App-IEEAPIs specify how normal
applications running on the main OS interact with the isolated execution environment.
Module-IEEAPIs specify how to develop modules running inside the isolated execution
environment.

6 http://www.l4dev.org
7 http://wiki.ncl.cs.columbia.edu/wiki/KVMARM:MainPage



A minimal way to make hardware security features available to application develop-
ers is for OEMs or network carriers to provide security-relevant services running inside
the isolated execution environment, and expose them via App-IEE APIs. This approach
may be attractive to OEMs and carriers, who may not want to bear the risk of allowing
third-party code to run in the device’s isolated environment, or the cost of implementing
strong isolation between modules in that environment. We now summarize the benefits
to application developers that arise from OEM- or carrier-provided security services
exposed through an App-IEE interface. Secure storage (§3) can be implemented by
allowing direct access to a secure storage location, or by implementing a sealed-data
API. Data sealed in this way would be protected from offline attacks, and attacks where
a different OS is booted (since the sealed-data-service would refuse to unseal for the
modified OS). Remote attestation (§3) implemented in the App-IEE-only model can
attest that a known OS image booted. This can provide some assurance to remote par-
ties that they are communicating with a client that started in a known configuration.
However, such mechanisms cannot detect if the OS has been compromised after it was
booted. Similarly, a secure provisioning (§3) service built in the App-IEE-only model
can ensure that exported data can only be accessed by a known device that booted a
known OS. However, it would have to trust that OS to not compromise the data itself
or to allow unauthorized applications to access that data. Atrusted-path service (§3)
implemented in the App-IEE-only model can ensure to the userthat an authorized OS
booted, but not that the OS remains uncompromised after it has booted.

Module-IEE API for running custom code in the isolated execution environment mit-
igates some of the concerns above. We summarize the desirable properties that arise
when a Module-IEE API for running custom code in the isolatedexecution environ-
mentis available to application developers. Module-IEE APIs for secure storage enable
developers to ensure that only their module can access sealed data, even if the OS is
compromised. Module-IEE APIs for remote attestation can run code isolated from the
OS, and need not include the OS’s measurements in their remote attestations. Module-
IEE APIs for secure provisioning can ensure that only the intended module running in
the isolated execution environment will be able to access provisioned data. A trusted
path implemented via Module-IEE APIs can provide assuranceto the user that he is
communicating with the intended module running in the isolated execution environ-
ment. We now discuss several published APIs. All of these specify App-IEE APIs;
some of them additionally specify Module-IEE APIs.
Mobile Trusted Module. The Mobile Trusted Module (MTM) is a specification by
the Trusted Computing Group (TCG) for a set of trusted computing primitives [44].
Like the Trusted Platform Module on PCs, the MTM provides APIs for secure storage
and for attestation, but does not by itself provide an isolated execution environment
for third-party code or facilities for trusted path. Unlikethe TPM, the MTM is ex-
plicitly designed to be implemented insoftware. In particular, it is amenable to being
implemented as a module running inside an isolated execution environment on a mobile
platform. Also unlike the TPM, the MTM explicitly supports the instantiation of sev-
eral parallel instances. This feature is intended to support an instance for each of a few
stake-holders on a mobile platform. Adding an MTM alone to a mobile platform and al-
lowing third-party developers to access it via App-IEE APIswould serve to expose the



underlying hardware security features in a uniform way across hardware platforms. The
MTM could also be used in architectures where third-party code is allowed to execute
in an isolated execution environment by instantiating a fresh, private, MTM instance for
each module that runs. This is similar to the approach taken by previous research on x86
platforms, with the MTM taking the place of the TPM [36, 40]. Another, orthogonal,
way to use an MTM is for the isolated execution environment itself to use the MTM as
a back-end. This strategy could provide a uniform interfacefor implementing the iso-
lated execution environment itself across multiple hardware platforms. While several
researchers have implemented the MTM [13, 16, 31, 48, 51], itis not to our knowledge
implemented on any off-the-shelf mobile platforms.
OnBoard Credentials. OnBoard Credentials (ObC) [14, 30] is an architecture to pro-
vide an isolated execution environment to third-party software modules written in the
Lua scripting language [14]. It includes both App-IEE and Module-IEE APIs. ObC pro-
vides most of the features described in§3: an isolated execution environment, secure
(sealed) storage, and secure provisioning. It also provides a form of trusted path, imple-
mented using a management application with a customizable interface. Unfortunately it
does not provide a remote attestation API, though adding onewould be straightforward.

ObC’s key provisioning design seems to be optimized for DRM use-cases, where it is
undesirable to have to re-encrypt media for each individualdevice, As a result, it relies
heavily on the physical security of all participating devices. Secured data is provisioned
or migrated between devices by encrypting it under a global program-family symmetric
key. In this model, compromising the program-family key from any participating device
is sufficient to compromise the confidentiality and integrity of data migrated by that
program-family on any device—a break-once, run-anywhere attack. It may be possible
to extend ObC to support a user-centric trust model, by replacing program-family-keys
with user-keys, and putting the user in charge of provisioning those keys to the de-
vices that the user owns or otherwise trusts. Such a provisioning mechanism could be
built using a remote-attestation mechanism; while ObC assumes the existence of such
a mechanism (using device-keys), its API does not expose a remote attestation feature
to secure software modules. However, adding such an API would be straightforward.
While multiple commodity smartphones are equipped with the necessary hardware sup-
port for ObC, enabling it requires a specially signed devicefirmware image from the
OEM or carrier, and is outside the reach of third-party developers and device owners.
TrustZone API. The TrustZone API (not to be confused with the TrustZone hard-
ware features) is an App-IEE API for managing and invoking modules in an isolated
execution environment [6]. The TrustZone API model is fairly abstract and provides
interfaces for selectingwhichsecure “device” or “world” to communicate with (§4.1).
Hence, the TrustZone API could conceivably be implemented to communicate with se-
cure services backed with other protection mechanisms, or even services running on a
remote device. The (publicly available) TrustZone API doesnot include Module-IEE
APIs. Hence, while it could be a useful set of APIs to expose toapp developers, allow-
ing them to communicate with services running in an isolatedexecution environment,
by itself it does not fully specify the APIs needed fordevelopingsuch service mod-
ules. We are not aware of any mobile platforms where the TrustZone API is open to
third-party developers.



GP Trusted Execution Environment (TEE). The GlobalPlatform consortium is de-
veloping a set of standards for a Trusted Execution Environment (TEE) [21]. It includes
both App-IEE APIs for applications to interact with isolated modules [19], and Module-
IEE APIs for developing such modules [20]. While the system architecture specifically
suggests options where the environment is created by multiplexing resources with an
untrusted OS, to our knowledge the only implementations of the TEE use a dedicated
device such as a Secure Element (§4.2) or smartcard, and only run applications in the
secure environment that are pre-approved by the entity deploying that device. The TEE
client specification [19] includes APIs for connecting to and invoking a secure applica-
tion. The TEE internal specification [20] defines the runtimesupport available to secure
applications running inside the TEE. Of the security features from§3, those missing are
remote attestation, secure provisioning, and trusted path. In principle remote attestation
can be added, which, as discussed in (§3), can be used to build secure provisioning.

7 Analysis and Recommendations
We now give our analysis of the security properties that today’s mobile devices can
provide, and offer recommendations to the research community, to app developers, to
platform integrators, and to hardware vendors. The set of primary stake-holders to-
day includes only the OEMs and telecommunications carriers(and their immediate
business partners). Thus, the hardware security primitives that are actually included in
mass-market mobile devices are only those of interest to theOEMs and telecommuni-
cations providers. It is our primary recommendation that application developers and de-
vice owners be considered first-classstake-holdersby OEMs and telecommunications
service providers. While economics may prevent the inclusion of additional hardware
security primitives in mass-market devices without a compelling business reason, those
primitives which are present should be leveraged to offer additional security features to
application developers and devices owners.
Research Community Recommendations.It is our recommendation to the research
community to continue to investigate viable architecturesfor multiplexing mutually-
distrusting stake-holders on resource-constrained hardware security primitives (§6). This
is especially important as virtualization extensions maketheir way to the ARM archi-
tecture (§4.1), opening up the possibility for two divergent approaches (split-world vs.
virtualization). Special attention should be paid to the possibility for a heterogeneous
threat model: OEMs and carriers are concerned about defenses against physical attacks,
whereas many use-cases for protecting the end-user’s data are primarily concerned with
software-based attacks that arrive via a network connection. Development hardware
with a multitude of unlocked security features is now readily available and inexpensive
(§4.7). Though hardware with virtualization extensions remains unavailable at the time
of this writing, ARM’s toolkit enables emulation of Cortex A15 platforms today. The
fear of fragmentation of security APIs can be addressed by developing consistent in-
terfaces. We recommend the adoption of consistent Module-IEE and App-IEE APIs, so
that application developers that endeavor to privilege-separate their programs today can
continue to reap the security benefits into the future without significant risk of incom-
patibility or maintenance / support nightmares.
Application Developer Recommendations.It is our recommendation to application
developers to continue to demand improved security APIs andprimitives in the devel-



opment environment for popular mobile device platforms. Weencourage application
developers to learn about existing proposals for Module-IEE and App-IEE APIs, and
to consider their implications for the architecture of their applications. Especially those
developers with an interest in open-source can produce reference implementations that
we expect may be rapidly adopted by other developers.
Platform Integrator Recommendations.We recommend that platform integrators (typ-
ically network carriers) take an interest in the security ofapplications on their devices.
We argue that they should adopt a realistic perspective regarding the robustness of the
OS APIs for security. Existing Module-IEE and App-IEE proposals should be adopted,
to avoid fragmentation and a lack of developer buy-in. Thesesecurity features will
enable application developers to add new value to the mobiledevice platforms as a
whole, resulting in an overall increase in the utility of mobile devices. We strongly urge
platform integrators to make hardware security features available that are otherwise
included in the silicon but disabled immediately during every boot. As a viable first
step, we recommend an implementation of the TCG’s Mobile Trusted Module (MTM)
in devices with TrustZone capabilities that are otherwise unused (§6). This suggestion
is consistent with the App-IEE-only approach discussed in§6, and offers new secu-
rity features to application developers. Note that it does not give application developers
the ability to directly execute their own code inside of an isolated execution environ-
ment (§3 and§6). Thus, it is a reasonable compromise between conservative, risk-averse
OEMs and carriers, and a useful set of APIs for application developers.
Hardware Vendor Recommendations.Unconstrained memory isolation and improved
protection against DMA-based attacks (§4.6) are significant needs in current device
hardware. It is more difficult for us to justify the added expense in device hardware at
the present time. If the market does indeed parallel our recommendations in the preced-
ing sections, and existing hardware security features begin to enable new applications,
then the logical next step is to offer additional hardware security features. To this end,
our recommendation is to address the DMA insecurity problem(§4.6). This will not
only add protection against currently prevalent attacks from malicious peripherals [47],
but will also result in the automatic inclusion of memory address-space controllers such
as a TZASC and/or TZMA (§4.1), so that security-sensitive modules that execute in iso-
lation need not grapple with today’s dearth of Tightly Coupled Memory.
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15. J.-E. Ekberg and M. Kylänp̈aä. Mobile trusted module (mtm) – an introduction. Technical
Report NRC-TR-2007-015, Nokia Research Center, Nov. 2007.
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