
Building Verifiable Trusted Path on Commodity x86 Computers

Zongwei Zhou, Virgil D. Gligor, James Newsome, Jonathan M. McCune

ECE Department and CyLab, Carnegie Mellon University

Abstract

A trusted path is a protected channel that assures the secrecy

and authenticity of data transfers between a user’s input/output

(I/O) device and a program trusted by that user. We argue that,

despite its incontestable necessity, current commodity systems

do not support trusted path with any significant assurance. This

paper presents a hypervisor-based design that enables a trusted

path to bypass an untrusted operating-system, applications, and

I/O devices, with a minimal Trusted Computing Base (TCB).

We also suggest concrete I/O architectural changes that will

simplify future trusted-path system design. Our system enables

users to verify the states and configurations of one or more

trusted-paths using a simple, secret-less, hand-held device. We

implement a simple user-oriented trusted path as a case study.

1 Introduction

A Trusted Path (TP) is a protected channel that assures the

secrecy and authenticity of data transfers between a user’s in-

put/output (I/O) devices and a program trusted by that user. A

trusted path is a necessary response to what Clark and Blumen-

thal call the “ultimate insult” directed at the end-to-end argu-

ment in system design [13]; namely, that a protected channel

between a user’s end-point and a remote end-point provides no

assurance without a protected channel between the user himself

and his own end-point. Without a trusted path, an adversary

could surreptitiously obtain sensitive user-input data by record-

ing key strokes, modify user commands to corrupt application-

program operation, and display unauthentic program output to

an unsuspecting user to trigger incorrect user action. This is

particularly egregious for embedded real-time systems where

an operator would be unable to determine the true state of a

remote device and to control it in the presence of a malware-

compromised commodity OS [20, 35, 53].

For the past thirty years, only a few systems have imple-

mented trusted paths with limited capabilities on boutique com-

puter systems. These systems employ only a small number of

user-oriented I/O devices (e.g., a keyboard, mouse, or video

display), and a small number of trusted programs (e.g., login

commands [5] and administrative commands [7, 15, 16, 19,

28, 30, 51]). Some instantiations include dedicated operating-

system kernels [21, 55]. Given the incontestable necessity of

trusted path as a security primitive, why trusted paths have not

been implemented on any commodity computer system using a

small-enough Trusted Computing Base (TCB) to allow signifi-

cant (i.e., formal) security assurance?

While many operating systems (OSes) offer trusted path

in the form of secure attention sequences—key-combinations

(e.g., Ctrl+Alt+Del) to initiate communication with the OS—

the trusted computing base for the end-points of that trusted

path is the entire OS, which is large and routinely compro-

mised. Such trusted paths, though users may be forced to trust

them in practice, are not adequately trustworthy.

Recent research has demonstrated removing the OS from the

TCB for small code modules [6, 43, 44, 57]. These mechanisms

use a smaller, more trustworthy kernel running with higher

privilege than the OS (e.g., as a hypervisor or as System Man-

agement Mode (SMM) code) to provide an isolated execution

environment for those code modules. While this work isolates

modules that perform pure computation, it does not provide a

mechanism that enables isolated modules to communicate with

devices without going through the OS, and hence fail to provide

a satisfactory trusted-path mechanism.

Another recent advance is the ability to structure device

drivers in a hypervisor-based system into driver-domains, giv-

ing different driver virtual machines (VMs) direct access to

different devices [14, 47]. However, this work only demon-

strates how to isolate device driver address spaces and Direct

Memory Access (DMA). It does not fully isolate devices from

compromised OS code in other administrative domains (e.g.,

system-wide configurations for I/O ports, Memory-Mapped I/O

(MMIO), and interrupts remain unprotected). Devices con-

trolled by a compromised OS may still breach the isolation be-

tween device drivers and gain unauthorized access to the regis-

ters and memory of other devices (Section 4).

Challenges. Address-space isolation alone is insufficient to

remove device drivers from each-others’ TCBs, because sub-

stantial shared device-configuration state exists on commod-

ity computers. A compromised driver in one virtual machine

can manipulate that state to compromise the secrecy and au-

thenticity of communication between drivers in other virtual

machines and their corresponding devices. For example, a

compromised driver can intentionally configure the memory-

mapped I/O (MMIO) region of a device to overlap the MMIO

region of another device. Such a Manipulated Device (ManD

in Figure 1) may then intercept MMIO access to the legitimate

trusted-path Device Endpoint (DE in Figure 1). The typical

mechanisms protecting CPU-to-memory access or DMA do not

defend against this “MMIO mapping attack” (Sections 4, 5.2

and 5.3).



Figure 1: Attacks against trusted-path isolation. A manipu-

lated device (ManD) launches an MMIO mapping attack (Sec-

tion 5.2) and an interrupt spoofing attack (Section 5.4) against

the path between the Program Endpoint (PE) and the Device

Endpoint (DE).

Another significant challenge not met by address space iso-

lation is interrupt spoofing. Software-configurable interrupts

(e.g., Message Signaled Interrupts (MSI) and Inter-processor

Interrupts (IPI)) share the same interrupt vector space with

hardware interrupts. By modifying the MSI registers of the

ManD, a compromised driver may spoof the MSI interrupts of

the DE. As shown in Figure 1, the unsuspecting driver in the

Program Endpoint (PE) for the DE may consequently perform

incorrect or harmful operations by processing spoofed inter-

rupts from the ManD (Sections 4 and 5).

Finally, another unmet challenge is to provide trusted-path

mechanisms with verifiable isolation properties on commodity

platforms without resorting to external devices that protect and

manage cryptographic secrets.

Contributions. We show how to protect shared device-

configuration state on today’s commodity platforms. We

use these techniques to build a general-purpose, trustworthy,

human-verifiable, trusted path system. It is general in that it al-

lows arbitrary program endpoints running on arbitrary OSes to

be isolated from their underlying OS and to establish a trusted

path with arbitrary unmodified devices. It is trustworthy in that

the TCB is small—only 16K source lines of code (SLoC) in

our prototype—and simple enough to put it within the reach of

formal verification [24, 25, 36]. It is human-verifiable in that

a human using the machine can verify that the desired trusted

path is in effect (e.g., that the keyboard is acting as a secure

channel to a banking program on that machine). We also pro-

pose modifications for the design of x86 platforms that enable

simpler, higher performance, and more robust, trusted-path im-

plementations. Finally, we present a case study of a simple

trusted-path application that communicates with the keyboard

and screen.

2 Problem Definition

This section presents the threat model, desired isolation prop-

erties, and assumptions for our trusted-path system.

2.1 Threat Model

We consider an adversary that has compromised the operat-

ing system (OS), which we henceforth refer to as the compro-

mised OS. A compromised OS can access any system resources

that it controls (e.g., access any physical memory address, and

read/write any device I/O port), and break any security mech-

anisms that rely on it (e.g., process isolation, file system ac-

cess control). The adversary can then leverage the compro-

mised OS to actively reconfigure any device (e.g., modify a de-

vice’s MMIO region, or change the operating mode of a device)

and induce it to perform arbitrary operations (e.g., trigger inter-

rupts, issue DMA write requests) using any I/O commands. We

say manipulated device to reference the result of such attacks.

We do not consider firmware attacks, physical attacks on

devices (see Section 2.3), or side-channel attacks. Denial-of-

service attacks are also out of scope; we seek only to guarantee

the secrecy and authenticity of the trusted path.

2.2 Desired Trusted-Path Isolation Properties

A Trusted Path contains three components: the program end-

point (PE), the device endpoint (DE), and the communication

path between these two endpoints. The communication path

represents all hardware (e.g., northbridge and southbridge chips

in Figure 1) between the device endpoint and the system re-

sources that support the execution of the program endpoint

(CPU and memory). The I/O data (e.g., keyboard scan code,

data written to a hard drive), commands (e.g., DMA write re-

quests), and interrupts exchanged between the two endpoints

are physically transferred along this path. Co-existing with

the commodity OS and its applications, our trusted-path sys-

tem must isolate these components from the compromised OS

and manipulated devices. Specifically, we seek to meet the fol-

lowing isolation requirements.

Program Endpoint (PE) Isolation. A compromised OS and

manipulated devices cannot interfere with the execution of the

PE, and cannot reveal or tamper with any run-time data gener-

ated by the program endpoint of the trusted path.

Device Endpoint (DE) Isolation. The I/O data and commands

transferred to/from the DE cannot be modified by, or revealed

to, the compromised OS and manipulated devices. Interrupts

generated by the DE must be delivered exclusively to the PE.

Spoofed interrupts generated by the compromised OS or ma-

nipulated devices must not interfere with the PE.

Communication Path Isolation. All hardware along the com-

munication path is treated in the same manner as a device end-

point. Thus, communication-path isolation is implemented by

applying the same mechanisms that assure device endpoint iso-

lation for all of the hardware devices along the communication

path.



Figure 2: Trusted path system architecture. The ordinary

path represents I/O transfers outside the trusted path. The

shaded area denotes the trusted computing base (TCB) of the

trusted path.

2.3 Assumptions

To setup a trusted path to a device, we must obtain accurate

information about the chipset hardware (e.g., northbridge and

southbridge in Figure 1) and how it is connected to the system.

The necessary chipset hardware information includes chipset

identifiers, internal register and memory layout and usage, con-

nectivity and hierarchic location (e.g., how the chipset hard-

ware is hard-wired together), and I/O port and memory map-

pings. Typically, this information is acquired from the system

firmware (e.g., BIOS). For the purposes of this paper, we as-

sume that the system firmware is trusted and provides us with

this information. In principle, it is possible to validate this

assumption if evidence of trustworthy configuration becomes

available; e.g., configuration attestation provided by system

mechanisms [41, 52], or by a trusted system integrator.

We also assume that all chipset hardware and I/O peripheral

devices are not malicious in the sense that their hardware and

firmware do not contain Trojan-Horse circuits or microcode

that would violate the trusted-path isolation in response to an

adversary’s surreptitious commands. Instead, we assume that

devices operate exactly following their specifications and do

not perform unintended operations; e.g., intercept bus traffic

that is not destinated to them, remain awake when receiving a

“sleep” command, or write data to a memory address that is

not specified in DMA commands. Such attacks are outside the

scope of the present work.

3 System Overview

Our trusted-path system comprises four components: the

program endpoint (PE), the device endpoint(s) (DE), the

communication-path, and a hypervisor (HV). Figure 2 illus-

trates the architecture of our system and the trusted-path iso-

lation from the untrusted OS, applications, and devices.

The trusted-path hypervisor HV is a small, dedicated hyper-

visor that runs directly on commodity hardware. Unlike a full-

featured hypervisor (e.g., VMware Workstation, Xen [8]), the

HV supports a single guest OS, and does not provide full virtu-

alization [8] of all devices outside the trusted-path to the guest

OS. Instead, the OS can directly operate on the devices outside

the trusted-path without the involvement of the HV. For ex-

ample, the leftmost application APP in Figure 2 can access the

device DEV via ordinary OS support. Section 3.1 discusses our

hypervisor design decisions in depth. The HV provides the nec-

essary mechanisms to ensure isolation between program end-

points, device endpoints, and communication paths for trusted

paths. In particular, the HV isolates trusted-path device state

from the “shared device-configuration state” on the commod-

ity platform (Section 4). The program endpoint PE of a trusted

path includes the device drivers for DEs that are associated with

that trusted path. In Section 3.2, we describe this “DE driver-

in-PE” design in more detail.

3.1 Trusted-Path Hypervisor

From a whole-system perspective, one can think of our trusted-

path hypervisor HV as a micro-kernel that runs at a higher priv-

ilege level than the commodity OS. As a starting point, rather

than attempting to isolate every driver from each-other, which

would require a huge engineering effort, we run a commodity

OS as a process on top of our hypervisor, and allow that pro-

cess to manage most of the devices most of the time, using the

existing drivers in the commodity OS. A trusted-path program

endpoint runs as a distinct isolated process (VM) directly on the

hypervisor. We isolate only the relevant driver(s) and integrate

them with the PE of the trusted path, as illustrated in Figure 2.

A valid design alternative would be to discard the hypervi-

sor and instead restructure an OS to be natively microkernel-

based. While this alternative may reduce total system complex-

ity, it would explicitly run counter to our stated goal of build-

ing trusted path on commodity platforms, compatible with com-

modity OSes. The complexities of such a restructuring job for a

commodity OS, both from a technical and business perspective,

are immense. We are not aware of any successful attempt at re-

structuring a commodity OS to become natively micro-kernel

based for the past three decades.

From an assurance perspective, our overriding goal is to

build a hypervisor that is small and simple enough to enable

formal verification. A small codebase is a necessary but in-

sufficient condition for formal verification. Code-size limita-

tions arise from the practical constraints of state-of-the-art as-

surance methods. To date, even the seemingly simple prop-

erty of address-space separation, which is necessary but in-

sufficient for trusted path isolation, has been formally proved

only for very small codebases; i.e., fewer than 10K SLoC [24].

Simplicity of the codebase is another necessary but insufficient

condition for formal verification. Our hypervisor’s complexity

is demonstrably lower than that of the formally verified seL4

microkernel [36]. Specifically, seL4 implements more com-



plex abstractions with richer functionality than our hypervisor.

For example, seL4 supports full-fledged threads and interpro-

cess communication primitives (as opposed to simple locks),

memory allocation (as opposed to mere memory partitioning),

and capability-based object addressing (as opposed to merely

address space separation via paging). In fact, the formal ver-

ification of address-space separation of ShadowVisor code (a

shadow-page-table version of TrustVisor [43]) has already been

achieved [24].

Our trusted path is user-verifiable since it allows a human

to launch the hypervisor and PE on a local computer system

and verify their correct configuration and state. We illustrate

in Section 8 how to securely perform trusted-path verification

for one or more trusted paths, using a simple handheld device

that stores no secrets to verify attestations [43] and to signal the

user that a trusted channel is in place.

3.2 Program Endpoint

Our trusted path design calls for the implementation of the de-

vice drivers of the DEs within the program endpoint for three

assurance reasons. First, our goal is to produce a small and

simple hypervisor, which can be verified with a significant level

of assurance; i.e., assurance based on formal verification tech-

niques. Including all device drivers would enlarge the hyper-

visor beyond the point where significant assurance could be

obtained. Second, placing the DE’s driver within a program

endpoint is a natural choice: DE driver isolation can leverage

all the mechanisms that protect the PE code and data from ex-

ternal attacks. Third, trusted-path device endpoints are dedi-

cated devices for a specific application and/or user interface.

Consequently, the DE device drivers are typically simpler than

their shared-device versions. That is, program endpoints have

the freedom to customize the DE driver for their specific needs

(e.g., some PEs clearly do not need full-fledged drivers, as il-

lustrated in Section 9). In particular, they can tailor the driver’s

functions to those strictly necessary and minimize its codebase

to obtain higher assurance of correct operation.

The alternative of placing a DE device driver in a separately

isolated domain in user or OS space would have two main-

tainability advantages over our choice. First, it would allow

the driver to be updated or even replaced with a different copy

without having to modify application code. Second, it would

remove the need to maintain two versions of a device driver

(one within the commodity OS and the other within the PE).

However, this alternative would have at least two security

disadvantages. First, an additional protected channel would be-

come necessary between the isolated DE driver and separately-

isolated PE, and an additional protection boundary would have

to be crossed and checked—not just the one between the hy-

pervisor HV and PE. Second, driver isolation in separate user

or system space would require extra mechanisms in addition to

those for PE isolation. For example, an additional protection

mechanism would become necessary to control the access of

application PEs to isolated drivers in user space. Furthermore,

serious re-engineering of a commodity OS/hypervisor would

become necessary [14, 36], which would run against our stated

goals. In balance, we picked the “DE driver-in-PE” model since

security and ease of commodity platform integration have been

our overriding concerns.

The key challenge for developing a program endpoint is to

isolate the DE driver from the untrusted OS. Since DE drivers

cannot rely on the OS Application Program Interfaces (API) for

I/O services, they must be modified from the commodity device

driver to eliminate API dependencies. In Section 7, we analyze

this design and offer guidelines for device driver development

for our trusted-path system.

4 Device-Isolation Challenges

As suggested in the introduction, both device-driver [14, 47]

and program isolation [6, 43, 44, 57] are insufficient for trusted-

path protection from a compromised OS. The fundamental rea-

son is that, aside from the address space containing the device

driver and program endpoint, there is still substantial shared

device-configuration state on the commodity platform. Protect-

ing individual device configurations within the “shared device-

configuration state” is necessary to provide device isolation for

a trusted path. We identify three categories of “shared state”

on current commodity platforms, and propose corresponding

protection mechanisms for our hypervisor design.

I/O Port Space. All devices on commodity x86 platforms

share the same I/O port space. The I/O port assigned to a partic-

ular device can be dynamically configured by system software.

If that software is a compromised OS, the I/O port(s) of one

device can be intentionally configured to conflict with those of

other devices. Thus, unmonitored I/O port reconfiguration of

any device on the platform may breach the I/O port access iso-

lation of a device endpoint. We present isolation mechanisms

for device I/O port access in Section 5.1.

Physical Memory Space. Devices’ MMIO memory re-

gions share the same physical address space. We present a

new attack—the MMIO mapping attack—which breaches de-

vice memory isolation. This attack cannot be solved by any

current mechanism for preventing unauthorized CPU access to

memory (e.g., AMD Nested Page Table (NPT) [3]) or for pre-

venting unauthorized DMA (e.g., Intel VT-D [34]). No existing

trusted-path solutions (e.g., [11, 22, 56]) prevent this attack.

In the MMIO mapping attack, a compromised OS intention-

ally maps theMMIOmemory of a manipulated device such that

it overlaps the MMIO or DMA memory region of a DE. As a

result, the data in DE memory becomes exposed to the manip-

ulated device, and hence the compromised OS. For example,

the malicious OS may map the internal transmission buffer of a

network interface card over top of the frame buffer of a graphics

card (where the graphics card is serving as the DE). Hence, the

display output may be directly sent to a remote adversary via

the network. We present our solution to prevent this attack in

Section 5.2, and also propose some architectural changes that

can help simplify our solution considerably (Section 6.3).



Interrupt Space. Software-configurable interrupts (e.g.,

MSIs, IPIs) share the same interrupt vector space with hard-

ware interrupts. For example, a compromised OS can send out

any spoofed interrupt to any CPU by writing the proper value

to one register in the Local Advanced Programmable Interrupt

Controller (LAPIC) [3]. By modifying a device’s MSI regis-

ters, a compromised OS can manipulate that device to send out

spoofed MSI interrupts to any CPU on the platform. The de-

vice endpoint isolation is violated, and an unsuspecting device

driver may consequently perform incorrect or harmful opera-

tions when receiving spoofed interrupts. In Section 5.4, we dis-

cuss the interrupt spoofing attack in detail and present our so-

lutions to prevent it from breaching trusted-path isolation. We

further suggest concrete I/O architectural changes to improve

our defense mechanisms in Sections 6.1 and 6.4.

For completeness, we also discuss two recently-reported I/O

attacks that are caused by DMA request ambiguity [48] and

by unmediated peer-to-peer device communication [49, 59, 60]

(Section 6). We provide defense mechanisms against these at-

tacks, and suggest potential I/O architectural changes that help

simplify our mechanisms.

5 Hypervisor Design

This section illustrates the detailed hypervisor mechanisms

which isolate the trusted-path device state within the shared

device-configuration state. We start with the protection of I/O-

port and device-memory access (Sections 5.1 and 5.2). Then

we describe the fundamental building block of device I/O iso-

lation, namely, the protection of the device configuration space

in Section 5.3. Section 5.4 shows how we leverage the device

I/O isolation to design device interrupt isolation mechanisms.

5.1 Protection of I/O-Port Access

Software programs use the IN/OUT family of CPU instructions

to exchange data with devices’ I/O ports. To control access

to device I/O ports, the hypervisor HV must prevent device-

port-mapping conflicts that may be intentionally created by the

compromised OS, and confine the I/O port access from both the

trusted-path program endpoint and the compromised OS.

Preventing Port-mapping Conflicts. The compromised OS

can re-map a manipulated device’s I/O ports to overlap those

of the DE. Read/write accesses to those I/O ports have unpre-

dictable results, since all devices that have port overlaps with

the DE will respond to the I/O access. Thus, a manipulated de-

vice (and a compromised OS) can potentially obtain secret data

from the trusted-path, or corrupt the execution of the PE.

To address this problem, the HV should isolate the DE’s I/O

ports from the shared I/O port space of the platform. Specif-

ically, before executing the PE, the HV scans through all I/O

port mappings relevant to the chipset hardware (as mentioned

in Section 2.3) and enumerates all plug-and-play (PnP) devices

to detect their configured I/O ports. For example, the HV ac-

cesses the PCI configuration space of all PCI devices in the

system, and parses their I/O port settings via the PCI Base Ad-

dress Registers in the configuration space. If any of the above

port settings conflict with those of the DE, the HV issues an ex-

ception to the PE. The HVmust protect all I/O port mappings in

the device configuration space from modification by a compro-

mised OS or manipulated devices, throughout the PE run-time.

We defer the details of scanning and protecting device configu-

ration space to Section 5.3.

Confining I/O-port Access. The HV should confine the PE

so that it can only access the I/O ports of its associated DE (s).

Specifically, the HV intercepts and filters out the port access

requests by the PE to unassociated I/O ports. This is accom-

plished by configuring the I/O port-access-interception bitmap

in the hypervisor control block that describes the PE’s execu-

tion environment (a standard feature of x86 hardware virtual-

ization support [3, 32]).1 Similarly, the HV should also fil-

ter out access to the DE’s ports from the OS running concur-

rently on different CPUs, by configuring the I/O port-access-

interception bitmap for the OS’s execution environment.

5.2 Protection of Device-Memory Access

There are two methods for the PE to interact with the DE via

physical memory space: Memory Mapped I/O (MMIO) and

Direct Memory Access (DMA). The compromised OS and ma-

nipulated devices can breach the isolation of the DE-associated

physical memory regions in three ways: via an MMIO map-

ping attack, through unauthorized CPU-to-memory access, or

via unmediated DMA.

Preventing MMIOMapping Attacks. The compromised OS

can launch an MMIO mapping attack on the DE’s associated

MMIO and DMA memory regions (recall Section 4), as shown

in the left half of Figure 3. To defend against this attack, the

hypervisor HVmust ensure that all MMIOmemory ranges used

by the chipset hardware and peripheral devices outside the PE-

DE trusted path are non-overlapping with those of the DE.

Before executing a PE, the HV scans through all MMIO

memory mappings specified by the chipset hardware, and enu-

merates all PnP devices to discover their MMIO memory

ranges (e.g., check the PCI Base Address Registers in the PCI

configuration space). If overlaps with the DE’s memory ranges

exist, an MMIO mapping attack may be in progress, and the

device isolation property of the trusted path may be violated.

Upon detection, the HV issues an exception to the PE. During

the PE’s execution, the HV must prevent the compromised OS

and manipulated devices from modifying the MMIO memory

mappings of all devices, by protecting the device configuration

space. We elaborate on our mechanisms for protecting device

configurations in Section 5.3.

Preventing Unauthorized Memory Access. The compro-

mised OS can directly access the DE’s MMIO and DMA mem-

ory regions, and can manipulate a device outside the trusted

path to issue unauthorized DMA requests to access those re-

1Section 9.1 presents an optimization mechanism when the PE executes at

user privilege level (CPU Ring 3), which by default will not have sufficient

privilege to access I/O ports.



Figure 3: MMIO mapping attack against the trusted path.

In the left half of the figure, ManD’s MMIO memory is

remapped to overlap that of the trusted-path DE (0x20-0x30),

and the MMIO mapping attack will succeed. The right half

shows that MMIO mapping attacks cannot compromise the ac-

cess to PCI/PCIe configuration space.

gions. The HV can defend against these attacks by leveraging

standard features for x86 hardware virtualization support. For

example, the HV configures the access permissions in Nested

Page Tables (or Extended Page Tables) [3, 32] to prevent unau-

thorized CPU-to-memory access. The HV also sets up the

IOMMU [2, 34] to protect the DE-associated memory regions

from other devices’ DMA buffers. Note that IOMMU protec-

tion relies on the assumption that it can correctly identify DMA

requests from the devices. We discuss DMA request ambiguity

and its influence on the trusted path in Section 6.1.

5.3 Protection of Device Configuration Space

A fundamental building block of our prevention mechanisms

against I/O port conflicts (Section 5.1) and MMIO mapping at-

tacks (Section 5.2) is protecting the device configuration space.

Specifically, the hypervisor intercepts all accesses to the device

configuration space throughout the trusted-path session, includ-

ing trusted-path establishment, run-time, and tear-down. The

hypervisor grants the program endpoint only the access permis-

sions to its device endpoints’ configuration space, and prevents

the OS and manipulated devices from modifying the I/O ports

and MMIO memory mappings of any device.

For the x86 I/O architecture, the device PCI/PCIe configura-

tion space is accessed via special I/O ports [10, 54], or through

reserved MMIO memory regions [10]. At first glance, this ap-

pears to lead to a cyclic dependency: protecting the device con-

figuration space, in reverse, relies on protecting the special I/O

ports and MMIO memory regions.

However, this seemingly cyclic dependency can be resolved.

The key observation is that I/O port conflicts and MMIO mem-

ory mapping attacks cannot corrupt the access to the device

configuration space (shown in the right half of Figure 3). Even

if some manipulated device has its I/O ports or MMIO memory

regions overlapping those of the configuration space, the ma-

nipulated device still can not intercept any configuration space

access destinated to other devices. Specifically, both the spe-

cial I/O port numbers and the base address of the configuration

space MMIO memory are located in dedicated registers in the

northbridge chipset [23]. The northbridge interposes on every

port and memory access from the CPU(s). If the requested ports

or memory regions fall into those of the configuration space, the

northbridge transforms the access requests into PCI/PCIe con-

figuration bus cycles with special address information. This ad-

dress information is only correlated with the targeted device’s

static geographic position in the system hierarchy where the

targeted PCI/PCIe device is hard-wired or plugged. I/O ports

and MMIO memory remapping cannotmanipulate device hier-

archic positions, and thus cannot cause the manipulated devices

to claim the configuration space cycles of other devices.

Therefore, during trusted-path establishment, the hypervisor

only needs to configure the I/O port-access-interception bitmap

(Section 5.1), Nested/Extended Page Tables, and IOMMU

(Section 5.2), to prevent unauthorized CPU-to-memory access

and DMA to the whole device configuration space. After that,

the HV can securely enumerate all devices. Protection of the

device configuration space remains active until the trusted path

is torn down.

5.4 Isolation of Device Interrupts

Our system handles three types of device interrupts, including

hardware interrupts managed by the [Advanced] Programmable

Interrupt Controller ([A]PIC), Message Signaled Interrupts

(MSI), and Inter-Processor Interrupts (IPIs). In a trusted-path

session, the hypervisor should fulfill the following two require-

ments for device interrupt isolation: (1) Interrupts should be

correctly routed, i.e., interrupts from the DE are exclusively

delivered to the respective PE, and other interrupts should not

arrive at the program endpoint.2 (2) Spoofed interrupts should

not compromise the trusted-path.

A common pitfall in interrupt isolation is ignoring require-

ment (2). One may argue that (2) is unnecessary, because the

driver of the trusted-path device endpoint can verify the identity

of the interrupts it receives. When the PE receives an interrupt

that appears to originate from the DE, it communicates with the

DE to check whether the DE indeed has a pending interrupt. If

not, the PE refuses to service this interrupt. However, not all

DE device drivers are robust against spoofed interrupts. For

2An exception exists when the PE receives interrupts from the devices that

physically share the same interrupt pin on the [A]PIC with the DE. To cope

with the shared interrupts, the HV provides a specific hypercall interface to the

PE for forwarding the shared interrupts to the OS on other CPUs. In a uni-

processor system, devices that share interrupts with the DE should be put into

a sleep or pending mode before invoking the PE. Otherwise, interrupts from

those devices are dropped during the trusted-path session, and those devices

are not guaranteed to perform consistently across the trusted-path session.



Figure 4: Interrupt spoofing attacks against the trusted-

path. IOAPIC*/LAPIC* denotes the interrupt con-

trollers manipulated by the compromised OS. Intr(DE’s

vector) represents spoofed hardware interrupts with the

DE’s interrupt vector. When the IOMMU interrupt remapping

feature is enabled, spoofed MSIs with incorrect issuer identi-

fiers will be filtered out by the IOMMU (Section 5.4.2).

example, MSI device drivers often assume that the OS avoids

interrupt conflicts when initializing MSI-capable devices. As

a result, a spoofed MSI may cause device driver misbehavior.

MSI device drivers that receive a spoofed DMA Finish inter-

rupt, without checking with the interrupting device, may oper-

ate on incomplete or inconsistent data.

To meet both interrupt isolation requirements, our trusted-

path system must modify the configurations of the interrupt

controllers, MSI-capable devices, and other chipset hardware

along the interrupt delivery route during trusted-path establish-

ment. The compromised OS may subvert those configurations

during the execution of the trusted-path program endpoint, in

order to mis-route device endpoint interrupts or launch inter-

rupt spoofing attacks (Figure 4). Thus, our trusted-path hyper-

visor should protect those configurations throughout the entire

trusted-path session. We now detail our protection mechanisms

for all three types of interrupts.

5.4.1 Isolating Hardware Interrupts

Hardware interrupts are managed by a PIC on uni-processor

systems, and by an I/O APIC and per-processor Local APICs

(LAPIC) on multi-processor platforms. The PIC and IOAPIC

are deployed with redirection tables that map device hardware

interrupts to their corresponding interrupt vectors (with vector

numbers and delivery destinations). The PIC or LAPICs then

decide when and whether to deliver messages with those in-

terrupt vectors to targeted CPU(s). HV isolates trusted-path

device interrupts as follows during trusted-path establishment:

• Modify the redirection table to reroute DE interrupts, and

to remove any interrupt-to-vector mapping conflicts be-

tween the DE and other devices.

• Setup corresponding PIC/LAPIC registers to enable de-

livery of the DE’s interrupts, and to temporarily disable

interrupts from other devices.

• Manipulate the OS’s Interrupt Descriptor Table (IDT) so

that the DE interrupts will trigger their corresponding in-

terrupt handlers in the PE.

While the PE is running, the hypervisor provides run-time

protections to the redirection tables, the interrupt controller reg-

isters, and the IDT (using the mechanisms described in Sec-

tions 5.1- 5.3). Note that no run-time protection is needed on

uni-processor systems, since the OS is held in a pending state

during the execution of the PE.

5.4.2 Isolating Message Signaled Interrupts

An MSI-capable device can generate MSIs by writing a small

amount of data to a special physical memory address. A chipset

component interprets the special memory write and delivers the

corresponding interrupts to the targeted processor(s) [10, 54].

Challenges. MSI-capable devices use Message Address Reg-

isters to store the memory address range, and Message Data

Registers to store the data that defines the interrupt vectors. To

launch an MSI-spoofing attack against a PE-DE trusted-path,

a compromised OS can change the Message Data Registers of

other devices to include the DE’s interrupt vector. By program-

ming the device’s DMA scatter-gather unit, the OS can also

spoof arbitrary MSI messages, without modifying any Message

Address/Data Register on any device [65].

The software-configurable nature of MSIs and the complex-

ity of the potential spoofing attacks make MSI isolation ex-

tremely difficult. Enumerating every MSI-capable device in

the system and configuring their MSI control registers is not

only time-consuming and inefficient, but also does not defend

against the above “scatter-gather attack” [65].

Solution. We design a comprehensive and efficient solution

for isolatingMSIs, which does not require controlling anyMSI-

capable devices other than the DE. Our solution leverages the

Interrupt Remapping features in the IOMMU [2, 34]. With Intel

VT-D Interrupt Remapping, MSI messages are embedded with

a specified handle [34]. Upon receiving an MSI message, the

IOMMU uses that handle as an index to locate a corresponding

Interrupt Remapping Table entry, which stores a device-specific

interrupt vector.

To re-route MSIs from the DE, the hypervisor HV modifies

the DE’s MSI message handle to point to a specific interrupt

vector with a chosen vector number and delivery destination

(only the CPU(s) executing the PE). The HV also configures

the LAPIC registers and IDT entries to ensure that MSIs are de-

livered to, and serviced by, the correct interrupt handlers. Note

that the chipset hardware that interprets MSI messages (e.g.,



the PCI host controller on the southbridge) often sits between

the devices and the IOMMU on the northbridge. The compro-

mised OS and manipulated devices may modify the configura-

tion of this hardware to suppress or mis-transform MSI signals.

Thus, the HV must also configure and protect the correspond-

ing registers on that interpreting hardware to enable and cor-

rectly transform MSI messages.

To defend against the MSI spoofing attacks, the trusted-path

hypervisor configures the corresponding interrupt remapping

table entry to only accept MSI messages with the DE’s device

identifier. As shown in Figure 4, spoofed interrupts generated

by manipulated devices do not have the interrupt identifier of

the DE, and thus are filtered out by the IOMMU. Note that this

defense mechanism relies on the assumption that the IOMMU

can correctly identify the MSI issuer (similar to identifying the

sender of DMA requests). We discuss this assumption in more

detail in Section 6.1.

Throughout the trusted-path session, the HV protects all the

above registers and tables using the mechanisms described in

Sections 5.1 - 5.3.

5.4.3 Isolating Inter-Processor Interrupts

During a trusted-path session, CPUs that run the OS can

leverage Inter-Processor Interrupts (IPIs) to forward unserviced

hardware interrupts to the trusted-path program endpoint (Fig-

ure 4). The OS issues those IPIs by writing special data to

the Interrupt Command Register (ICR) of the LAPIC. The data

carries information including the interrupt type, vector number,

and delivery destination.

Challenges. Because the DE’s interrupts are exclusively

routed to the associated program endpoint, and that program

endpoint only handles interrupts from its device endpoints, any

unserviced device interrupts forwarded from other CPUs to the

PE should be treated as spoofed interrupts.

Defending against these spoofed interrupts requires care.

First, when delivering interrupts to the CPU, the LAPIC does

not distinguish between IPIs and interrupts directly from de-

vices. IPIs with the DE’s interrupt vector number are always

delivered to the PE. Second, the IOMMU is not used for inter-

cepting IPI messages, and is often not on the path between two

LAPICs. Third, memory protection mechanisms (Section 5.2)

of the hypervisor HV do not work. When access to the ICR is

trapped into the HV via memory access violations, the contents

of the memory write are not reported to the HV [3, 32]. The HV

cannot determine what IPIs are sent without knowing the value

written to the ICR. Note that the HV cannot blindly block all

IPIs, since some of them are for important system management

purposes such as cache coherency.

Solution. To prevent spoofed IPIs, our trusted-path hypervi-

sor employs a mechanism to control the LAPICs by enabling

the LAPIC x2APIC mode. In x2APIC mode, LAPIC regis-

ters are accessed via Model Specific Registers (MSR) access

instructions, which are privileged instructions that can be inter-

cepted by the hypervisor. Fortunately, an MSR access violation

does report to the hypervisor the value being written that trig-

gered the violation. Therefore, during the trusted-path session,

the hypervisor HV intercepts all data writes to the ICRs of all

other CPUs that run the OS, and blocks only the data writes that

trigger spoofed IPIs to the PE. This interception remains active

until the trusted-path is torn down. In Section 6.4, we also pro-

pose some architecture modifications that would help simplify

our protection mechanism here.

6 I/O Architectural Suggestions

We make suggestions for changes to the commodity x86 I/O

architecture that would significantly simplify the design of our

trusted-path solution.

6.1 DMA Request Ambiguity

DMA-capable peripherals that are the downstream of one or

more PCI/PCI-to-PCIe bridges cannot be uniquely identified

by the system’s IOMMU, enabling devices in such locations

to impersonate other nearby devices. Manipulated devices may

leverage this attack to violate the isolation of the DMAmemory

region of the trusted-path device endpoint [48].

We first describe a software work-around to this DMA re-

quest ambiguity problem, which provides the desired security

properties but incurs significant performance overhead. The

HV identifies all devices behind the same PCI/PCI-to-PCIe

bridges that connect the DE by enumerating the PCI configura-

tion space. Before executing the PE, these devices are put into

a quiescent state (e.g., sleep, or a pending state). The HV can

verify the devices’ quiescent state by reading device-specific

status registers before approving the execution of the PE. Dur-

ing the PE’s execution, the HV prevents the compromised OS

from waking the pending devices by interposing on the relevant

I/O ports and memory ranges (Sections 5.1 and 5.2).

However, quiescing all devices sharing the same PCI/PCI-to-

PCIe bridge with a trusted-path DE reduces I/O performance.

During the execution of the trusted path PE, an OS cannot

communicate with any of those devices. To eliminate this un-

comfortable trade-off between trusted-path security and per-

formance, we suggest several potential architectural changes.

First, motherboard manufacturers can configure a system that

supports trusted path by assigning only one PCI device to each

PCI or PCI-to-PCIe bridge. Alternatively, the PCI/PCI-to-PCIe

bridge design specifications might be changed to transmit the

identifiers of the originating devices when relaying I/O transac-

tions. A third proposal is to enhance the DMA request ID spec-

ifications to include additional information, such as the con-

tents of the PCI vendor ID and device ID configuration register

fields. This information should not be changed or replaced by

PCI/PCI-to-PCIe bridges.

6.2 Unmonitored Peer-Device Communication

Manipulated PCI/PCIe and USB 2.0+ devices may establish

peer-to-peer connections with a trusted-path device endpoint,

bypassing all isolation mechanisms implemented by the hy-

pervisor [49, 59, 60]. PCI/PCIe peer-to-peer communication



complies with the PCI/PCIe specifications [10, 54], and thus

cannot be denied by the device itself. The hypervisor’s MMIO

protection can neither prevent nor detect peer-to-peer commu-

nication, since this communication operates directly on the in-

ternal memory of the communicating devices. In addition, the

IOMMU cannot mediate communication for PCI and USB de-

vices that are connected to the southbridge chip, because the

IOMMU is integrated into the northbridge chip.

To prevent PCI peer-to-peer communication, we propose us-

ing the new PCIe Access Control Services (ACS) [4]. The ACS

on an I/O bus/bridge will actively check the originator’s identity

in I/O requests, and prevent I/O command spoofing and unau-

thorized I/O access. The trusted-path hypervisor configures the

ACS on all corresponding bridges to prevent any peer-to-peer

communication between the DE and other devices. The hyper-

visor also protects the ACS configuration using the mechanisms

described in Section 5. The remaining problem is that ACS is

not yet a common feature of the I/O architecture, and most cur-

rent PCI bridges and chipset hardware do not implement it.

The prevention of USB On-The-Go (OTG) peer-to-peer

communication [61] is easier, because the communication only

succeeds when both communicating devices enable OTG and

comply with OTG protocols. Thus, the HV or PE can explic-

itly configure the DE to disable USB OTG.

6.3 MMIO Memory Access Control

As mentioned in Section 5.2, there is no central con-

troller/chipset hardware that can explicitly control access to the

mapping between devices and their MMIO memory regions,

without involving the on-CPU software. As one good example,

the IOMMU provides controls on the mapping between devices

and their DMA memory regions. We suggest similar protec-

tion mechanisms be implemented within the memory manage-

ment unit (MMU). This would enable trusted code (i.e., the

HV) to explicitly assign MMIO memory regions to devices, or

to a group of devices, based on a specific access control policy.

This I/O architectural change would help simplify our counter-

measures against the MMIO mapping attack.

6.4 Memory Virtualization Support

Memory virtualization support in mainstream CPUs (e.g.,

AMD NPT [3], Intel EPT [32]) only delivers memory address

and access type information to the hypervisor when a mem-

ory access violation occurs. Thus, the hypervisor cannot easily

know what data was being written to the corresponding mem-

ory address. This limitation affects the virtualization of all

devices that rely on MMIO access. We propose an improve-

ment of the memory virtualization support. The memory viola-

tion should be delivered to the hypervisor with a pointer to the

contents that were being written to the memory region. This

improvement will help to simplify the hypervisor design for

virtualizing MMIO-capable devices. It will also help simplify

device design, since no special mode for virtualization (e.g.,

x2APIC mode of LAPIC mentioned in Section 5.4.3) is needed.

7 Program Endpoint (PE) Driver Design

We discuss design options for trusted-path device drivers in

PEs, and provide some high-level guidelines for driver imple-

mentation under different CPU privilege levels.

Driver Design. To isolate the trusted-path device driver from

the OS, we need to modify the commodity device driver to

eliminate any dependencies on the commodity OS or OS ker-

nel. Such driver porting efforts are manageable for the fol-

lowing four reasons. First, previous research on device driver

implementation in user space [12, 40] and device driver isola-

tion [18, 26, 58] shows how to extract the drivers from the OS

kernel in a manner that reduces reliance on the OS for I/O ser-

vices. Second, research on driver code characteristics shows

that most of the commodity driver code is for housekeeping

purposes, such as resource allocation, clean-up, and error han-

dling, with only a small portion of the code dealing with the

actual device I/O [26]. The modifications for implementing the

DE device driver inside a PE might not propagate to the en-

tire codebase of the commodity driver. Third, our trusted-path

hypervisor already implements critical I/O services needed by

the DE drivers (such as interrupt-controller configuration, de-

vice I/O port and MMIO settings, and DMA memory man-

agement), which are quite helpful in driver implementation.

Fourth, trusted-path device drivers need not be full-featured

device drivers as in the commodity OS. Instead, trusted-path

device drivers may only need to support a minimal set of func-

tions that meet the I/O needs of the associated program end-

point. For example, to implement secure display, the graphics-

controller driver in the PE might only support a subset of all

possible graphics-card modes.

Guidelines. The detailed implementation of a trusted-path

device driver is closely related to the features of its trusted-

path device and the needs of the program endpoint. These dif-

fer significantly across trusted-path applications. We introduce

general guidelines for designing I/O related portions of the DE

driver in our trusted-path system.

To serve the different functional and performance needs

of trusted-path applications, DE device drivers can be imple-

mented either in user privilege level (Ring 3), or kernel priv-

ilege level (Ring 0). We recommend implementing device

drivers in Ring 3 for security-sensitive trusted-path applica-

tions, where performance is not the major concern of the ap-

plication. In the Ring 3 case, the driver itself cannot directly

execute I/O operations associated with privileged CPU instruc-

tions: e.g., IN/OUT for I/O port access, RDMSR/WRMSR for

accessing MSRs, and IRET for returning from interrupt service

routines. Our trusted-path system should not temporarily ele-

vate the privilege level of the device endpoint drivers and the

program endpoint to allow executing these privileged instruc-

tions. Instead, the DE driver executes these instructions with

the involvement of the HV, via certain hypercall interfaces. In

addition, device drivers in Ring 3 are often operating in virtual

memory space and lack the view of physical-to-virtual memory



mappings. In cases where the drivers need to perform opera-

tions directly on physical memory addresses (e.g., to manipu-

late devices’ MMIO registers), the driver needs the involvement

of the HV to provide the corresponding physical addresses.

The frequent involvement of the hypervisor introduces a perfor-

mance penalty to the device driver. Our case study (Section 9)

illustrates our experiences in minimizing the involvement of the

HV to enable high performance driver operations.

In the Ring 0 case, the device endpoint driver can execute

privileged CPU instructions, which may give the driver access

to critical system resources such as I/O ports and MSR regis-

ters. The key challenge is for the trusted-path hypervisor to

confine the capabilities of the DE drivers, so that the drivers

can not abuse their capabilities to compromise the rest of the

system, including the OS, applications, and other devices. In

addition, the unsuspecting abuse of privileged instructions for

access to system resources may incur a performance penalty by

triggering hypervisor involvement or driver misbehavior.

8 User Verification of Trusted-Path State

Our design enables verification of the trusted-path state (e.g.,

correct configuration and activation) to a third party who is of-

ten a human user. We use two simple devices for this task: a

TPM that is widely accessible in many commodity computers,

and a simple hand-held verification device.

Our hand-held device is simpler and more widely applica-

ble than the special I/O devices in some related works (Sec-

tion 10). First, the standard remote attestation protocol is

identical for different trusted-path configurations, and thus a

general-purpose verifier suffices to work for all trusted-path ap-

plications. Second, our device only performs standard public-

key cryptographic operations (e.g., certificate and digital signa-

ture verification) and a few cryptographic hash operations. It

does not store any secrets. Third, our device outputs the ver-

ification result to the user via only one red-green, dual-color

LED. The green light indicates the correct PE-to-DE trusted-

path state [37]. Moreover, our design can also support multiple

trusted-paths on a platform using just one simple device.

Note that all user-verification of the trusted-path state in the

presence of malware requires some external trusted device.

Otherwise a user cannot possibly obtain malware-independent

verification that the output displayed on the video display orig-

inates from a correctly configured and isolated trusted compo-

nent, rather than from malware.3

Trusted-Path Verification Protocol. We describe a simple

protocol for user verification of the trusted-path state. The

hand-held verifier starts remote attestation by sending a pseudo-

3To obtain malware-independent verification of the trusted-path state we

must detect the effect of the Cuckoo attack [46], which exploits the difficulty

of a human in possession of a physical computer to guarantee that s/he is com-

municating with the true hardware TPM inside that computer. This is a generic

attack for all attestation schemes that use TPMs, and we address it by requir-

ing that (1) the public key (certificate) of the TPM be loaded in the verifier

device before that verifier is used for the first time, and (2) the verifier checks

the validity of the signatures originating from the local TPM.

random nonce (for freshness) to an untrusted application on the

host platform. Upon receiving the nonce from the untrusted

application via some pre-reserved shared memory region, the

trusted-path program endpoint requests a TPM Quote contain-

ing cryptographic hashes of the code and static initialized data

of the hypervisor and the program endpoint that are digitally

signed using a TPM-based key. The program endpoint returns

the signed quote to the untrusted application, which sends the

quote to the hand-held verifier. The verifier checks the validity

of the signature and cryptographic hashes taken over the HV

and the PE, and displays the result to the user via a red-green

dual-color LED. If the green LED is on, the user knows that the

intended hypervisor and program endpoint are running on the

host platform, and the PE-to-DE trusted path has been estab-

lished. If the red light comes on, the security properties of the

trusted-path are not guaranteed.

Supporting Multiple Trusted Paths. If activation of multiple

trusted paths to different program endpoints is desired from the

same hand-held device, we envision that a single trusted path

to a trusted shell [30] can first be executed on the target plat-

form. This trusted shell, together with the trusted-path and the

underlying hypervisor, can be verified by the user as explained

above. All other isolated PEs can then be registered via the un-

derlying hypervisor using trusted shell commands. A user can

also identify, select, invoke, manage, monitor, and tear down

any desired PE via the trusted shell. Because the trusted path

for input to and output from the trusted shell has already been

verified by the user using a hand-held device, there is no need

to verify any subsequent trusted paths.

9 Case Study:

A Simple User-Oriented Trusted Path

We implement a user-oriented trusted-path and evaluate its per-

formance to illustrate the feasibility of our trusted-path design.

This trusted path application protects a user’s keyboard input

sent to an application, and the output from the application to

the computer’s display, against attacks launched from the com-

promised OS or applications, and manipulated devices.

We implement the trusted-path system and perform all mea-

surements on an off-the-shelf desktop machine with an AMD

Phenom II X3 B75 tri-core CPU running at 3 GHz, an AMD

785G northbridge chip, and an AMD SB710 southbridge

chipset. The machine is equipped with a PS/2 keyboard in-

terface, an STMicro v1.2 TPM, and an integrated ATI Radeon

HD 4200 with VGA compatible graphics controller 9710. This

machine runs 32-bit Ubuntu 10.04 as its Desktop OS.

9.1 Hypervisor Implementation

We implement our hypervisor by extending a multi-core ver-

sion of TrustVisor [43]. Our extension includes configuration

access protection, device I/O ports, MMIO and DMA mem-

ory protection, and interrupt redirection and protections. Our

DEs are a PS/2 keyboard and a VGA-capable integrated graph-

ics controller. Specifically, the HV protects the device config-



Table 1: A comparison of hypervisor codebases.

Debug Code C/Assembly Code Header Files

HV 513 12556 2918

TrustVisor 468 11704 2566

uration space (Section 5.3), and then securely enumerates all

devices. The HV also sets up the IOAPIC and LAPIC to de-

liver the keyboard interrupt to the CPU that runs the PE (Sec-

tion 5.4), and protects the IOAPIC and LAPIC configuration

using the mechanisms described in Sections 5.1 and 5.2. In

addition, the HV also downgrades the graphics controller to

basic VGA text mode, identifies the corresponding VGA dis-

play memory region, and protects both this memory region and

the entire graphics controller MMIO region by configuring the

IOMMU and Nested Page Tables. Note that we have not im-

plemented the MSI interrupt protection mechanisms and the

LAPIC x2APIC mode virtualization (Section 5.4).

Small TCB. We use the sloccount4 program to count the num-

ber of lines of source code in TrustVisor and our hypervisor

HV. As shown in Table 1, our implementation of HV adds only

1,200 lines of code to TrustVisor’s codebase, among which

around 200 lines of code are for controlling the device con-

figuration space (Section 5.3), 450 lines are for the interrupt

protection mechanisms in Section 5.4, and 300 lines are for the

I/O port and memory protection mechanisms in Sections 5.1

and 5.2. Our software TCB for the hypervisor (not including

the source code for debug purposes) is about 15,500 lines of

code in total.

9.2 Program Endpoint Implementation

The PE comprises a PS/2 keyboard driver, which handles the

keyboard interrupt, receives and parses keystroke data, and a

VGA driver, which writes keystroke data to the VGA display

memory. The PE runs in CPU Ring 3. This unprivileged set-

ting allows for more efficient isolation mechanisms between the

PE and the rest of the system. That is, instead of trapping every

port access from the PE (Section 5.1), the HV simply config-

ures the OS’s I/O permission bitmap in the Task State Segment

to confine the PE’s access to only the DE’s I/O ports.

However, running the PE in Ring 3 makes DE driver porting

more difficult. First, some sensitive I/O instructions (e.g., IN,

OUT) and some critical device-driver instructions (e.g., IRET)

can only execute with system privileges (CPU Ring 0). Sec-

ond, device drivers sometimes need to perform operations di-

rectly on physical memory addresses (e.g., to manipulate de-

vice registers), but drivers running unprivileged within a PE do

not have access to the mappings between virtual addresses and

physical addresses. Third, some of the physical memory pages

are protected so that only privileged system code (running at

CPU Ring 0) can access them.

During program endpoint implementation, we minimize in-

vocations of the HV for the above operations, while still main-

4http://www.dwheeler.com/sloccount/

Table 2: Trusted-path setup and tear-down overhead.

Average (in ms) of 10,000 trials.

TrustVisor HV

Trusted-path Setup 1.752±1.7% 1.925±2.2%

Trusted-path Tear-down 0.436±1.9% 0.528±1.8%

taining the isolation of the PE from the OS. For example, the

graphics card in VGA mode provides an MMIO memory re-

gion where software writes the contents that are displayed on

the screen. To perform memory writes to this physical mem-

ory region, the PE reserves a region in its virtual memory space

and then makes a hypercall to the HV. The HV re-maps the re-

served PE memory pages to the VGA display memory region.

After this hypercall, the PE has direct access to that memory

region without any additional hypercalls.

Note that the hypervisor still needs to emulate some privi-

leged instructions, e.g., when the DE interrupt handler finishes

execution and returns control back to the PE, the interrupt han-

dler should run a return-from-interrupt (IRET) instruction. The

HV provides a hypercall that emulates this IRET instruction.

9.3 Micro-benchmarks

We present micro-benchmark results to demonstrate: (1) the

overhead of trusted-path establishment and tear-down is rea-

sonable, and (2) our optimized PE implementation can achieve

good performance by minimizing invocations of the HV.

Trusted-path Setup and Tear-down. To measure the HV

overhead for trusted-path establishment, we compared the time

required for the creation of a PE’s isolated environment and a

trusted path between a PE and a DE with the time required to

create only a PE’s isolated environment using TrustVisor. As

shown in Table 2, TrustVisor took about 1.752 milliseconds to

create the isolated environment, while our HV took about 1.925

milliseconds to create the same environment and establish the

trusted-path. Thus, trusted-path establishment adds about 9.8%

overhead to the original TrustVisor implementation.

We also measured the HV overhead incurred in trusted-path

tear-down after the PE completes all of its operations. In 10,000

trials, TrustVisor tore down the isolated environment of the

PE in approximately 0.436 milliseconds, while HV tore down

the same isolated environment and the trusted path in approx-

imately 0.528 milliseconds. Thus, the trusted-path tear-down

adds approximately 21% overhead to the original TrustVisor

implementation. This is because it takes much less time to tear-

down an isolated environment than to create one, while set-

ting up and protecting the APICs and graphics controller con-

figuration during trusted-path establishment takes roughly the

same time as restoring and unprotecting them during trusted-

path tear-down.

In our experiments, both the latency overhead of trusted-path

establishment and tear-down were negligible compared to the

duration of an ordinary TP session, which often lasts for sec-

onds or more.



Table 3: DE device driver performance. Average latency

overhead (in µs) of 100,000 trials.

Direct Access Invoking HV

I/O Port Access (INB) 18±6.2% 40±3.4%

I/O Port Access (OUTB) 19±5.4% 40±3.7%

VGA Display Memory Write 15±3.2% 39±2.7%

Device Driver Performance. We measure the HV overhead

in emulating the INB and OUTB operations to a device (PS/2

keyboard in this case study) and data writes to MMIO memory

(VGA display memory region in this case study), since these

are common operations for most trusted-path applications. The

measurements in Table 3 illustrate that our optimized imple-

mentation of user-level DE drivers can achieve good perfor-

mance by minimizing the frequency of HV invocations for op-

erations that require system-level privileges. Our optimized PE

implementation took only 18 microseconds to perform INB and

19 microseconds for OUTB. In contrast, invoking the HV and

performing a same operation would take around 40 microsec-

onds. PE writes to VGA display memory take approximately

15 microseconds, but it would take more than 39 microseconds

to invoke the HV to perform the same operation. This implies

that a context switch between the trusted-path program end-

point and the hypervisor takes roughly 23 microseconds.

10 Related Work

We first compare our trusted-path system with closely related

work; i.e., the Uni-directional Trusted Path (UTP) [22] system,

the DriverGuard system [11], and hypervisors with a structured

root domain [14, 47]. Then we review other trusted-path pro-

posals. None of the related work achieves all of our trusted-

path isolation and TCB reduction properties (Table 4), for the

following three reasons. (1) Most proposals rely on large TCBs

and sacrifice assurance. (2) Some proposals employ crypto-

graphic channels and require special devices and key manage-

ment functions. These solutions are often impractical and have

fundamental usability issues. (3) Device virtualization-based

solutions often fail to provide device isolation and/or program

endpoint isolation.

10.1 Closely Related Work

The UTP system [22] proposes an isolated software module

to control user-centric I/O devices (e.g., keyboard and display)

and enables a remote server to verify that a transaction sum-

mary is confirmed by a local user’s keyboard input. However,

the UTP system does not provide local, user-verifiable evidence

of the output trusted path; i.e., malicious code can display a

fake transaction output to the user. Unfortunately, UTP does

not defend against all the attacks we address, e.g., MMIO map-

ping attack, MSI spoofing, IPI spoofing, and attacks that exploit

the DMA request ambiguity.

The DriverGuard system [11] protects the confidentiality of

the I/O flows between commodity peripheral devices and some

Privileged Code Blocks (PCBs) in device driver code. Our sys-

tem protects both the confidentiality and integrity of the I/O

data. Moreover, DriverGuard does not claim that they protect

the I/O data from MMIO mapping attacks. Thus, the I/O data

in PCBs may still be revealed to a potentially compromised OS.

In addition, DriverGuard’s I/O port access isolation is incom-

plete. PCBs are in a higher privilege level than the OS kernel,

and thus can access any I/O ports of any other devices.

Hypervisors with structured root domains can assign differ-

ent device drivers to separate virtual machines (VMs) and se-

curely associate them with application VMs [14, 47]. These hy-

pervisors isolate the I/O ports and the memory address-space of

a device driver domain from other domains. However, their de-

vice driver VM isolation mechanisms are incomplete. A single

malicious VM driver may still exploit the device-isolation in-

adequacies of commodity I/O hardware discussed above (e.g.,

MMIO mapping attack, MSI spoofing, IPI spoofing, and DMA

request ambiguity) to compromise other device VMs. Our so-

lutions defend against all of these attacks. Moreover, a program

endpoint in an application VM typically communicates with the

device VM via a guest OS [14, 47], and the device driver inside

a device VM is also not fully isolated from the OS in that device

VM [47]. This greatly swells their trusted-path TCBs (Table 4).

10.2 Other Trusted-Path Proposals

Large TCB Requirements. Trusted path on the DirectX sys-

tem [38] and the Trusted Input Proxy system [9] reserve dedi-

cated areas of the screen to output the identity and status of the

current applications. These systems are built atop large operat-

ing systems. The Not-a-Bot system [29] implements a software

module to capture human keyboard inputs and to use them to

identify human-triggered network traffic. This system builds a

small code module upon a reduced version of the Xen hypervi-

sor and mini-OS kernel, which is still around 30K SLoC. Saroiu

and Wolman propose a system that runs a root virtual machine

(e.g., a dom0 in Xen) to read a mobile device’s sensors [50].

This design trusts a full virtual machine monitor, and only pro-

tects data integrity. Similarly, Gilbert et al. propose a trustwor-

thy mobile sensing architecture [27] that enables a remote data

receiver to verify that the sensed data is from the intended sen-

sors and has only been manipulated by trusted software (e.g.,

the intended sensing application, trusted OS, and VMM).

Cryptographic Channels and Special Devices. Saroiu et

al. [50] propose another sensor reading protection system based

on the assumption that the reading is digitally signed by a TPM

on the sensor (c.f. [17]). The Zone Trusted Information Chan-

nel (ZTIC) is a dedicated device with a display, buttons and

cryptographic primitives [39, 64]. ZTIC enables users to se-

curely confirm their banking transactions via the dedicated dis-

play and button, completely bypassing the user’s computer,

which may be infected by malware. The Bumpy system re-

quires a special keyboard that supports cryptographic primi-

tives including encryption and certificate validation [45].

Solutions using cryptographic channels and special devices



Table 4: A comparison of trusted-path components in different architectures. “Dom0” denotes the monolithic root domain in

the “split-driver” model [8]. “Structured dom0” represents the root domain in the hypervisor model where each device driver is

separated into a VM domain (“Dev VMs” in this table).

Monolithic Hypervisor Hypervisor with Hypervisor with Our

OS/hypervisor with dom0 device pass-through structured dom0 Solution

TP Program Endpoint app VM(OS+app) VM(OS+app) VM(OS+app) app

TP Device Driver OS/hypervisor dom0 OS VM per device app

Other TP Components hypervisor hypervisor+dom0 hypervisor+Dev VMs small hypervisor

TCB Size (SLoC) >10M >1.2M >1.2M >1.2M ≈16K

with cryptographic primitives often require the protection of

secrets in user-level programs and/or commodity I/O devices,

which is often impractical and raises fundamental usability

concerns for commodity platforms. How could a user securely

set or change the secret key within a trusted-path program end-

point without using some trusted path to reach that program?

Device Virtualization. Hypervisors that are based on the

“split-driver” model [8] move device management from the hy-

pervisor to a root domain, dom0, which is frequently large and

unstructured [14]. Hence, it merely exposes the trusted-path to

a different set of attacks from those possible in a monolithic

OS (e.g., Windows) or VMM (e.g., VMware Workstation), but

does not eliminate these attacks. Equally undesirable is that

a program endpoint typically communicates with the DE of a

trusted path via the untrusted guest OS upon which it runs.

Hypervisors with device pass-through support [42] (e.g.,

Xen, KVM) or para-passthrough support (e.g., BitVisor [56])

enable exclusive assignment of I/O devices to a specific guest

VM. However, the driver of the pass-through device is still in

the guest VM and co-exists with the guest OS. There is no de-

vice driver isolation in this mechanism. Also, a compromised

root domain, dom0, can still break the device isolation and

communication path isolation. For example, typically the user

must explicitly “hide” the pass-through devices from dom0 via

some administrative settings in dom0.

11 Applicability to New I/O Architectures

QuickPath/HyperTransport. Intel’s QuickPath Architec-

ture [33] provides high-speed, point-to-point interconnects be-

tween microprocessors and external memory, and between mi-

croprocessors and an I/O hub. This architecture is designed to

reduce the number of system buses (e.g., replace the front-side

bus between the CPU and memory), and to improve intercon-

nect performance between CPU, memory, and I/O peripherals.

However, QuickPath is not intended to, and indeed does not,

solve the communication-path isolation and device isolation

problems for the I/O devices of a trusted path any more than the

commodity x86-based I/O architecture. Although we present a

trusted-path design for the latter, our design is easily adapted

for the former. The changes are only in the composition of the

communication path: for the x86 architecture, a northbridge

and a southbridge are involved, whereas in the QuickPath ar-

chitecture, a QuickPath controller and an I/O hub are used. In

addition, memory management units are directly embedded in

QuickPath-enabled CPUs. Our trusted-path design is equally

applicable to other similar I/O architectures, including AMD’s

HyperTransport [31].

ARM. Recent advances to ARM’s TrustZone security exten-

sions [1] and virtualization support [62] make the application of

our trusted-path design to ARM-based I/O architectures pos-

sible [63]. ARM’s TrustZone Security Extensions [1] split a

single physical processor state to safely and efficiently execute

code in two separate worlds: a more-privileged secure world,

and a normal world. System designers can leverage multiple

hardware primitives, such as TrustZone-aware memory man-

agement units, DMA and interrupt controllers, and peripheral

bus controllers, to partition critical system resources and pe-

ripheral devices and assign them to different worlds. In addi-

tion, with forthcoming virtualization support [62], it is possi-

ble to run a hypervisor in a special mode of the normal world

that can optionally trap any calls from the normal world’s guest

OS to the secure world. Porting our trusted-path system to the

ARM architecture, and supporting a wide range of applications

on mobile and embedded platforms, is future work.

12 Conclusion

Building a general-purpose trusted path mechanism for com-

modity computers with a significant level of assurance re-

quires substantial systems engineering, which has not been

completely achieved by prior work. Specifically, it requires

(1) effective countermeasures against I/O attacks enabled by

inadequate I/O architectures and potentially compromised op-

erating systems; and (2) small trusted codebases that can be

integrated with commodity operating systems. The design pre-

sented in this paper shows that, in principle, trusted path can

be achieved on commodity computers, and suggests that sim-

ple I/O architecture changes would simplify trusted-path design

considerably.

Acknowledgement

We are grateful to the reviewers, and Kevin Butler in particular,

for their insightful suggestions. We also want to thank Adrian

Perrig and Amit Vasudevan for stimulating conversations on

trusted path.



This research was supported in part by CyLab at Carnegie

Mellon under grant DAAD19-02-1-0389 from the US Army

Research Office, and by the National Science Foundation

(NSF) under grants CNS083142 and CNS105224. The views

and conclusions contained in this document are solely those of

the authors and should not be interpreted as representing the

official policies, either expressed or implied, of any sponsoring

institution, the U.S. government or any other entity.

References

[1] T. Alves and D. Felton. TrustZone : Integrated Hardware and

Software Security. ARM white paper, 2004.

[2] AMD. AMD I/O virtualization technology (IOMMU) specifica-

tion. AMD Pub. no. 34434 rev. 1.26, 2009.

[3] AMD. AMD 64 Architecture Programmer’s Manual: Volume 2:

System Programming. Pub. no. 24593 rev. 3.20, 2011.

[4] AMD and HP. PCI Express Access Control Services (ACS):

PCI-SIG Engineering Change Notice, 2006.

[5] C. R. Attanasio, P. W. Markstein, and R. J. Phillips. Penetrating

an operating system: a study of VM/370 integrity. IBM System

Journal, 15(1):102–116, 1976.

[6] A. M. Azab, P. Ning, and X. Zhang. SICE: a hardware-level

strongly isolated computing environment for x86 multi-core plat-

forms. In Proc. ACM Conference on Computer and Communi-

cations Security, 2011.

[7] BAE Systems Information Technology LLC. Security Target,

Version 1.11 for XTS-400, Version 6, 2004.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of

virtualization. In Proc. ACM Symposium on Operating Systems

Principles, 2003.

[9] K. Borders and A. Prakash. Securing network input via a trusted

input proxy. In Proc. USENIX Workshop on Hot Topics in Secu-

rity, 2007.

[10] R. Budruk, D. Anderson, and E. Solari. PCI Express System

Architecture. Addison-Wesley Professional, 2003.

[11] Y. Cheng, X. Ding, and R. H. Deng. DriverGuard: A fine-grained

protection on I/O flows. In Proc. European Symposium on Re-

search in Computer Security, 2011.

[12] D. Clark. An Input/Output Architecture for Virtual Memory Com-

puter Systems. PhD thesis, MIT, 1974.

[13] D. D. Clark and M. S. Blumenthal. The end-to-end argument and

application design: the role of trust. Federal Communications

Law Journal, 63(2):357–390, 2011.

[14] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Deegan,

P. Loscocco, and A. Warfield. Breaking up is hard to do: Secu-

rity and functionality in a commodity hypervisor. In Proc. ACM

Symposium on Operating Systems Principles, 2011.

[15] Common Criteria for Information Technology Security Evalua-

tion (CC). Common methodology for information technology

security evaluation. Version 3.1 CCMB-2009-07-004, 2009.

[16] Department of Defense. Trusted computer system evaluation cri-

teria (orange book). DoD 5200.28-STD, 1985.

[17] A. Dua, N. Bulusu, W.-C. Feng, and W. Hu. Towards trustwor-

thy participatory sensing. In Proc. USENIX Conference on Hot

Topics in Security, 2009.

[18] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel:

An operating system architecture for application-level resource

management. In Proc. ACM Symposium on Operating Systems

Principles, 1995.

[19] J. Epstein, C. Inc, J. McHugh, H. Orman, R. Pascale, A. Marmor-

Squires, B. Danner, C. R. Martin, M. Branstad, G. Benson, and

D. Rothnie. A high assurance window system prototype. Journal

of Computer Security, 2(2):159–190, 1993.

[20] N. Falliere, L. O. Murchu, and E. Chien. W32.stuxnet dossier.

Symantec, version 1.3, 2011.

[21] N. Feske and C. Helmuth. A nitpicker’s guide to a minimal-

complexity secure GUI. In Proc. Annual Computer Security Ap-

plications Conference, 2005.

[22] A. Filyanov, J. M. McCune, A.-R. Sadeghi, and M. Winandy.

Uni-directional trusted path: Transaction confirmation on just

one device. In Proc. IEEE/IFIP Conference on Dependable Sys-

tems and Networks, 2011.

[23] S. Fleming. Accessing PCI Express configuration registers using

Intel chipsets. Intel White Paper no. 321090, 2008.

[24] J. Franklin, S. Chaki, A. Datta, J. M. McCune, and A. Vasude-

van. Parametric verification of address space separation. In Proc.

Conference on Principles of Security and Trust, 2012.

[25] J. Franklin, S. Chaki, A. Datta, and A. Seshadri. Scalable para-

metric verification of secure systems: How to verify reference

monitors without worrying about data structure size. In Proc.

IEEE Symposium on Security and Privacy, 2010.

[26] V. Ganapathy, M. J. Renzelmann, A. Balakrishnan, M. M. Swift,

and S. Jha. The design and implementation of microdrivers.

In Proc. International Conference on Architectural Support for

Programming Languages and Operating Systems, 2008.

[27] P. Gilbert, L. P. Cox, J. Jung, and D. Wetherall. Toward trustwor-

thy mobile sensing. In Proc. Workshop on Mobile Computing

Systems and Applications, 2010.

[28] V. D. Gligor, C. S. Chandersekaran, R. S. Chapman, L. J. Dot-

terer, M. S. Hecht, W.-D. Jiang, A. Johri, G. L. Luckenbaugh,

and N. Vasudevan. Design and implementation of secure Xenix.

IEEE Transactions on Software Engineering, 13(2):208–221,

1986.

[29] R. Gummadi, H. Balakrishnan, P. Maniatis, and S. Ratnasamy.

Not-a-bot: Improving service availability in the face of botnet

attacks. In Proc. USENIX Symposium on Networked Systems

Design and Implementation, 2009.

[30] M. S. Hecht, M. E. Carson, C. S. Chandersekaran, R. S. Chap-

man, L. J. Dotterrer, V. D. Gligor, W. D. Jiang, A. Johri, G. L.

Luckenbaugh, and N. Vasudevan. UNIX without the superuser.

In Proc. USENIX Annual Technical Conference, 1987.

[31] HyperTransport Consortium. HyperTransport I/O link specifica-

tion. Doc. no. HTC20051222-0046-0008 rev.3.10, 2006.

[32] Intel. Intel trusted execution technology – software development

guide. Doc. no. 315168-005, 2008.

[33] Intel. Intel’s QuickPath architecture: A new system architec-

ture for unleashing the performance of future generations of Intel



multi-core microprocessors, 2008.

[34] Intel. Intel virtualization technology for directed I/O architecture

specification. Intel Pub. no. D51397-005 rev. 1.3, 2011.

[35] Jeanne Meserve. Sources: Staged cyber attack reveals vulnera-

bility in power grid. http://edition.cnn.com/2007/

US/09/26/power.at.risk/index.html, 2007.

[36] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,

P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,

T. Sewell, H. Tuch, and S. Winwood. seL4: formal verification

of an OS kernel. In Proc. ACM Symposium on Operating Systems

Principles, 2009.

[37] B. Lampson. Usable security: How to get it. Communications of

the ACM, 52(11):25–27, 2009.

[38] H. Langweg. Building a trusted path for applications using

COTS components. In Proc. NATO RTS IST Panel Symposium

on Adaptive Defence in Unclassified Networks, 2004.

[39] B. Laurie and A. Singer. Choose the red pill and the blue pill: a

position paper. In Proc. Workshop on New Security Paradigms,

2008.

[40] B. Leslie, P. Chubb, N. Fitzroy-dale, S. Gotz, C. Gray,

L. Macpherson, D. Potts, Y. Shen, K. Elphinstone, and G. Heiser.

User-level device drivers: Achieved performance. Journal of

Computer Science and Technology, 20(5):654–664, 2005.

[41] Y. Li, J. M. McCune, and A. Perrig. VIPER: Verifying the in-

tegrity of peripherals’ firmware. In Proc. ACM Conference on

Computer and Communications Security, 2011.

[42] J. Liu, W. Huang, B. Abali, and D. K. Panda. High performance

VMM-bypass I/O in virtual machines. In Proc. USENIX Annual

Technical Conference, 2006.

[43] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and

A. Perrig. TrustVisor: Efficient TCB reduction and attestation.

In Proc. IEEE Symposium on Security and Privacy, 2010.

[44] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki.

Flicker: An execution infrastructure for TCB minimization. In

Proc. European Conference in Computer Systems, 2008.

[45] J. M. McCune, A. Perrig, and M. K. Reiter. Safe passage for

passwords and other sensitive data. In Proc. Network and Dis-

tributed Systems Security Symposium, 2009.

[46] B. Parno. Bootstrapping trust in a ”trusted” platform. In Proc.

USENIX Workshop on Hot Topics in Security, 2008.

[47] I. Pratt, K. Fraser, S. Hand, C. Limpach, A. Warfield, D. Ma-

genheimer, J. Nakajima, and A. Mallick. Xen 3.0 and the art of

virtualization. In Proc. Ottawa Linux Symposium, 2005.

[48] F. L. Sang, E. Lacombe, V. Nicomette, and Y. Deswarte. Exploit-

ing an I/OMMU vulnerability. In Proc. International Conference

on Malicious and Unwanted Software, 2010.

[49] F. L. Sang, V. Nicomette, Y. Deswarte, and L. Duflot. Attaques

DMA peer-to-peer et contremesures. In Proc. Symposium sur la

Sécurité des Technologies de l’Information et des Communica-

tions, 2011.

[50] S. Saroiu and A. Wolman. I am a sensor, and I approve this

message. In Proc. Workshop on Mobile Computing Systems and

Applications, 2010.

[51] R. Schell, T. Tao, and M. Heckman. Designing the GEMSOS

security kernel for security and performance. In Proc. National

Computer Security Conference, 1985.

[52] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. SWATT:

Software-based attestation for embedded devices. In Proc. IEEE

Symposium on Security and Privacy, 2004.

[53] N. Shachtman. Exclusive: Computer virus hits u.s. drone

fleet. http://www.wired.com/dangerroom/2011/

10/virus-hits-drone-fleet/, 2011.

[54] T. Shanley and D. Anderson. PCI System Architecture. Addison-

Wesley Professional, 4th edition, 1999.

[55] J. S. Shapiro, J. Vanderburgh, E. Northup, and D. Chizmadia.

Design of the EROS trusted window system. In Proc. USENIX

Security Symposium, 2004.

[56] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa,

T. Horie, M. Hirano, K. Kourai, Y. Oyama, E. Kawai, K. Kono,

S. Chiba, Y. Shinjo, and K. Kato. Bitvisor: a thin hypervisor for

enforcing I/O device security. In Proc. ACM SIGPLAN/SIGOPS

International Conference on Virtual Execution Environments,

2009.

[57] U. Steinberg and B. Kauer. NOVA: a microhypervisor-based se-

cure virtualization architecture. In Proc. European Conference

on Computer Systems, 2010.

[58] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the

reliability of commodity operating systems. In Proc. ACM Sym-

posium on Operating Systems Principles, 2003.

[59] A. Triulzi. Project Maux Mk.II - “I own the NIC, now I want a

shell!”. In PacSec/core, 2008.

[60] A. Triulzi. The Jedi Packet Trick takes over the Deathstar (or:

“taking NIC backdoors to the next level”). In CanSecWest/core,

2010.

[61] USB Implementers Forum. On-The-Go and Embedded Host

Supplement to the USB Revision 2.0 Specification, Revision 2.0

plus errata and ecn, 2010.

[62] P. Varanasi and G. Heiser. Hardware-supported virtualization on

ARM. In Proc. ACM SIGOPS Asia-Pacific Workshop on Sys-

tems, 2011.

[63] A. Vasudevan, E. Owusu, Z. Zhou, J. Newsome, and J. M. Mc-

Cune. Trustworthy execution on mobile devices: What security

properties can my mobile platform give me? Technical Report

CMU-CyLab-11-023, Carnegie Mellon University, 2011.

[64] T. Weigold, T. Kramp, R. Hermann, F. Höring, P. Buhler, and

M. Baentsch. The zurich trusted information channel — an effi-

cient defence against man-in-the-middle and malicious software

attacks. In Proc. International Conference on Trusted Comput-

ing and Trust in Information Technologies: Trusted Computing -

Challenges and Applications, 2008.

[65] R. Wojtczuk and J. Rutkowska. Following the white

rabbit: Software attacks against intel VT-d technology.

http://invisiblethingslab.com/resources/

2011/SoftwareAttacksonIntelVT-d.pdf, 2011.


