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ABSTRACT
Users regularly experience a crisis of confidence on the Internet.
Is that email or instant message truly originating from the claimed
individual? Such doubts are commonly resolved through a leap of
faith, expressing the desperation and helplessness of users.

To establish a secure basis for online communication, we pro-
pose SafeSlinger, a system leveraging the proliferation of smart-
phones to enable people to securely and privately exchange their
public keys. Through the exchanged authentic public keys, Safe-
Slinger establishes a secure channel offering secrecy and authentic-
ity, which we use to support secure messaging and file exchange.
SafeSlinger also provides an API for importing applications’ public
keys into a user’s contact information. By slinging entire contact
entries to others, we propose secure introductions, as the contact
entry includes the SafeSlinger public keys as well as other public
keys that were imported. We present the design and implementa-
tion of SafeSlinger for Android and iOS, which is available from
the respective app stores. An overview video of SafeSlinger is
available at:http://www.youtube.com/watch?v=IFXL8fUqNKY

Categories and Subject Descriptors
C.2.0 [Computer – Communication Networks]: General—secu-
rity and protection; D.2.2 [Software Engineering]: Design Tools
and Techniques—modules and interfaces; H.1.2 [Models and Prin-
ciples]: User/Machine Systems—human factors
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Trust Establishment; Security & Privacy; Secure Communication.

1. INTRODUCTION
For many current Internet applications, users experience a cri-

sis of confidence. Is the email or message we received from the
claimed individual or did an impostor send it? Many useful proto-
cols such as SSL/TLS or PGP have been proposed for entities that
already share authentic key material. However, the drawbacks and
weaknesses of the global certification process for SSL/TLS [23,28]
and the usability challenges of decentralized mechanisms such as

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise,or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiCom’13,September 30-October 4, Miami, FL, USA.
Copyright 2013 ACM 978-1-4503-1999-7/13/09 ...$15.00.

PGP [36] are well known. Furthermore, even with these protocols,
the root of the problem still remains: how do we obtain the authen-
tic public key from the intended resource or individual?

The human-centric foundation of trust establishment makes this
problem universally important; protocols and interfaces need to
be designed for a diverse population with varying skills, interests,
ages, and cultures. We postulate that usability is one of the major
barriers for widespread adoption of cryptography.

The recent proliferation of smartphones offers a promising op-
portunity to address these challenges, as these devices offer a gen-
eral computing environment with a powerful processor, high-res-
olution display, several communication modalities (WiFi, 3G/4G,
Bluetooth, NFC), camera, and sensors. Thus, smartphones can en-
able convenient, spontaneous exchanges of public keys.

We observe that individuals often have physical interactions with
resources or other individuals before communicating digitally. Of-
ten, people communicate over the Internet or via SMSafter having
met in person. We leverage thisphysicalencounter to bootstrap
digital trust. People who communicate before physically meeting
can bootstrap trust through a secure introduction mechanism that is
rooted in physical encounters with a common acquaintance.

In this paper, we present SafeSlinger, a system for secure ex-
change of authentic information between two smartphones and a
user interface for secure messaging while preserving secrecy. In
essence, SafeSlinger exchanges contact information, containing pub-
lic keys in addition to standard contact list information such as
name, picture, phone numbers, email addresses, etc. Thanks to the
association between the individual holding the phone and the ex-
changed public key, users can later associate digital communication
with the previously met individual by verifying a digital signature.
To make SafeSlinger usable, the cryptographic aspects are mostly
hidden from the user, and we have added several mechanisms to
make SafeSlinger tolerant to user error.

We envision SafeSlinger as a general approach to bootstrap se-
cure digital communication. First, we enable groups of up to 10 in-
dividuals of physically co-located users to securely bootstrap trust
by slinging keys between their devices (a one-time operation).1

SafeSlinger can also support remote exchanges, as long as users
can authenticate the other individuals, e.g., via telephone commu-
nication or live video conference. Second, SafeSlinger supports
secure phone-to-phone messaging and file transfer, providing both
secrecy and authenticity. Once users’ devices hold each other’s
public keys, the SafeSlinger user experience is comparable to that
of traditional SMS and MMS messaging today. Third, SafeSlin-
ger enablessecure introductionswithout physical meetings by al-
lowing a common acquaintance to facilitate a mutual introduction

1For more than 10 users, Ho-Po Key [25] may be used to exchange
keys among members in large groups.



using SafeSlinger file transfer. Fourth, we enable other applica-
tions to use the SafeSlinger API to add their public key to a contact
entry. Now, when a user slings its updated contact list entry to an-
other user, each application’s public key is automatically included,
and the receiver’s corresponding application can extract the public
key. This mechanism can enable applications such as secure email,
secure SMS, and encrypted file sharing to solve the problem of se-
curely exchanging the public key without requiring a leap of faith.2

Contributions. SafeSlinger is the first complete system that pro-
vides privacy-preserving and secure group credential exchangewith-
out any external trusted parties, restricting the exchanged informa-
tion to other group members only. SafeSlinger is also the first se-
cure group credential exchange system that can be used remotely
over a telephone or video conferencing line. SafeSlinger is de-
signed to be easy to use and defend against all attacks we are aware
of. We implement SafeSlinger as an open-source project and make
it available for free on Android and iOS app stores.

2. PROBLEM SETTING
In this section, we define the problem we set out to solve, discuss

our goals, present assumptions that need to hold, the adversary that
we defend against, and present attacks.

2.1 Problem Definition
The basic primitive that we seek to accomplish is to securely ex-

change information that is associated with the intended individual
participating in an exchange. The security properties that we seek
are information secrecy (only the intended entities receive the in-
formation), and user-verifiable trustworthy association of data to an
honest individual (user knows exactly the information that is asso-
ciated with a specific honest individual).

Note that there are fundamental limits on the ability of an elec-
tronic protocol to protect one human against another human with
the intent to deceive, hence the adjective “honest.” Specifically,
when the exchange involves more than two people, the group ex-
change should produce the exact same security properties that would
result from pairwise exchanges between all members of the group.
For example, if Fred, George, and Harry perform an exchange, and
Harry behaves adversarially, we still wish for the information ex-
changed between Fred and George to satisfy all security properties.

Given such a secure exchange that includes a public key, all sub-
sequent mechanisms for authentic and secret communication can
be implemented using well known protocols, relying on the correct
binding of the public key to the individual.

2.2 Goals
Our core goal is to enable groups of two or more users to spon-

taneously exchange their contact list information. To enable such a
usable system and maintain high security, we outline four essential
properties required in SafeSlinger to exchange contact data:

• Scalable:We emphasize groups because we wish to avoid the te-
dium of a group of users exchanging their information viaN(N−
1)/2 pairwise exchanges.
• Easy to use: We also emphasize usability while retaining the

security properties described above.
• Portability: Another goal is to support heterogeneous platforms,

thus enabling interactions among smartphones of several manu-
facturers and running different operating systems.
• Authenticity: Each user should obtain the correct contact infor-

mation of other users.

2A leap of faithis blind trust in an initially received public key, also
known asTrust On First Useor TOFU).

• Secrecy: Contact information is available only to other group
members after a successful completion of the exchange, and re-
main hidden from external adversaries.

2.3 Assumptions
Our protocol does need to assume certain user behaviors to exe-

cute successfully. First, we assume that users are computer literate
and can follow basic instructions. We also assume that users have a
natural desire for security and that they do not want to deliberately
disclose their private information. We also assume that users can
authenticate (in the human sense, e.g., recognizing the other users’
appearance, voice, etc.) the individuals that they perform informa-
tion exchanges with, such that an adversary who impersonates an-
other individual would be detected through personal identification.
More specifically with respect to the SafeSlinger protocol, we as-
sume that users perform the following security-relevant operations:

• Exclusion of unintended participants: Legitimate users will
expel an unwanted bystander who wants to participate in the pro-
tocol.

• Correct member count: Users need to correctly count the num-
ber of group members who participate in an exchange.

• Identity validation: Users correctly validate the identity infor-
mation received from the exchange. They should map the iden-
tity information to the people who participate in the exchange,
and they should reject information of non-participants.

• Impersonation detection: Users verify that no other user has
injected information that impersonates them in the current ex-
change. For example, a malicious user may also inject informa-
tion about Alice, even though Alice is also participating in the
exchange. The risk is that another user may discard the correct
information and accept the wrong information.

• Diligent comparison: Users perform a comparison of three words
with all other participants, even after executing the protocol nu-
merous times without any attack.

• Diligent error checking and aborting: Users will abort the pro-
tocol and restart the protocol when suspicious or error conditions
are encountered.

SafeSlinger is not limited to only smartphone users; the protocol
can be implemented on laptop or desktop computers. However, we
focus on participants who use their smartphones frequently since
smartphones are easy to use, are more available during casual en-
counters, and also suitable for carrying personal information, such
as an electronic business card.

We assume that the smartphone hardware and software is free of
vulnerabilities and malware, as these aspects are outside the scope
of this work.

2.4 Adversary Model
We assume that some of the legitimate users that participate in

the protocol may be malicious (We call the other users honest).
We consider a Dolev-Yao style network adversary that has com-
plete control over all network messages. Furthermore, any Internet
server we may use during protocol operations may be malicious.
We also assume that other adversaries may be physically present
in the space where information exchanges happen. We consider
an adversary who wants to break the properties as described in the
problem definition, i.e., violate secrecy and authenticity properties
of the information exchange and subsequent communication. We
consider denial-of-service attacks to be out of scope, as we assume
that the users may re-start the protocol as needed.
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Figure 1: Multi-value commitment structure for authenticating
and disclosing eitherV1 or V2.

2.5 Attacks
Secure local exchange of information is a surprisingly intricate

and challenging problem. Possible attacks include:

• Malicious bystander who participates in protocol: A bystander
can overhear conversation and attack the protocol by control-
ling the local wireless communication, performing aMan-in-
the-Middle (MitM) attack on all participants.
• Malicious group member: A member of the group wants to

violate protocol properties, such as mounting animpersonation
attack by injecting incorrect information for another user, or per-
forming aSybil attack [12] by injecting multiple entries either
for fictitious individuals or for individuals who are not present.
• Group-in-the-Middle (GitM): In a GitM attack [16], a mali-

cious group member creates separate groups for the victim mem-
bers and creates a sufficient number of virtual identities such that
each group has the correct number of members. Each victim
member believes to be part of a group withN members (with the
N-1 other members), but instead the victim is in a separate group
with the adversary andN-2 fake members. This attack is power-
ful as it breaks several proposed protocols, as we briefly discuss
in Section 9.
• Malicious server: For protocols that rely on a back-end server,

the server may be controlled by a malicious administrator or be-
come compromised.
• Information leakage after protocol abort: An adversary may

be able to cause a protocol abort and trigger leakage of private
information about a participant.
• Collision attack on low-entropy hash: Low-entropy hash val-

ues are vulnerable to efficient attacks unless precautions are taken
[8,17,18,35,37].

3. CRYPTOGRAPHIC BACKGROUND
We provide background on the cryptographic mechanisms used

in this paper: multi-value commitments and group Diffie-Hellman
key agreement.

3.1 Multi-Value Commitments
A cryptographic commitment protocol is used to lock an entity to

a valueV without disclosingV. Based on the commitment value,
the decommitment can be validated and the protocol ensures that
the correct valueV is disclosed. A commitment protocol for value
V can proceed as follows:C=H(V,R), whereC is the commitment
value,H is a cryptographic hash function that is one-way, collision-
free, and has pseudo-random output ifR is a random unpredictable
nonce. Thanks to the properties of the hash function and the ran-
domness ofR, V cannot be inferred from the commitmentC. To
open the commitment,V andR are disclosed. The collision resis-
tance property ofH ensures that it is computationally infeasible to
find anotherV or R that will result in the same commitmentC. Note
that if V is unpredictable (e.g., a freshly generated ephemeral pub-

(K = gz·gxy
,ggz·gxy

)

(gxy,ggxy
) (z,gz)

(x,gx) (y,gy)

Figure 2: Group DH key agreement tree for 3 members (mod p
operations omitted to improve readability). The notation is
(priv, pub), where the first element in the parenthesis lists the
DH private key, and the second lists the DH public key. The
group key is the private keyK at the root.

lic key), the additional nonce valueR is not needed and we simply
haveC= H(V).

In case we want to commit to either valueV1 or V2 (deciding
which to actually release at a future time) with a single commit-
ment, we can employ a tree-like structure (Figure 1).HV1 =H(V1),
HV2 = H(V2), andC= H(HV1 || HV2), where|| indicates the con-
catenation operator. This structure enables decommitment of either
V1 orV2 without disclosing the other. For example, to decommitV1,
we discloseV1 andHV2, and the case forV2 is analogous. Note that
this example is for the case whenV1 andV2 are unpredictable to the
adversary; additional use of nonces is required for well knownV1
or V2. This type of structure is similar to one-time signatures [24].

In the SafeSlinger protocol, we further make use of hierarchical
commitments, where the decommitment value is again a commit-
ment value.

3.2 Group Diffie-Hellman Key Agreement
Group Diffie-Hellman (DH) key agreement is a generalization

of the two-party DH key agreement [11], where multiple parties
participate to establish a common group key. The Cliques protocol
is an example for group DH key establishment [31], and STR [30]
and TGDH [15] protocols are tree-based group DH protocols. In
the STR protocol, the tree shape is a maximally unbalanced tree
(resembling a comb), and the TGDH protocol uses a balanced tree.
Research has shown that total protocol latencies are lower for STR
in environments where the communication latency dominates over
the computation of a modular exponentiation [14], which is the case
in mobile environments with smartphones. Hence, we will make
use of STR, which we briefly describe in this section.

In group DH protocols, each participant is placed at a leaf node
of a binary tree, where each node of the tree has a private and a pub-
lic key associated with it. The value of a leaf node is the private and
public DH keys of the member at that node. The value of the parent
node is derived through the DH operation on the values of the two
child nodes, for example if the values of the child nodes arex for
the private andgx mod p for the public key of the left child, andy
for the private andgy mod p for the public key of the right child,
the parent value isgxy mod p for the private andggxy mod p mod p
for the public value. Figure 2 illustrates a group DH key agreement
with three members, where each node in the tree lists the private
and public DH keys. The private key that corresponds to the root
node is the shared secret of all group members.

4. SafeSlinger EXCHANGE PROTOCOL

4.1 Overview
The main purpose of SafeSlinger is to enable a set of users to

exchange their contact information such that every non-malicious



user receives the correct information about every other non-malicious
user. Malicious users may collude and impersonate each other, for
example, therefore we cannot provide any guarantees for those par-
ties. Our main goal is to provide security and usability while pre-
venting the attacks described in Section 2.5.

The first hurdle we need to overcome is to enable communica-
tion among the users’ mobile devices. We currently target Android
and iPhone devices, with an effort to make design decisions com-
patible with future implementations for other platforms (e.g., Win-
dows phones). Unfortunately, current platforms do not offer con-
sistent support for 802.11 ad-hoc mode or seamless creation of a
base station to enable other devices to connect to them. Bluetooth
communication is also inconvenient because of the slow discovery
phase and the inability of iPhones to communicate with non-Apple
devices (excepting headsets). NFC is not yet widely deployed, and
such communication does not scale beyond pairwise communica-
tion. Moreover, none of these local communication mechanisms
would enable remote users to exchange their contact information.
As a consequence, we use Internet-based communication, where
all the mobile devices connect to a cloud server via IP.

When mobile devices initially connect to the cloud server, the
server does not know which devices belong to the same group. It
is a challenging problem for the server to determine the group-
ing, especially if many concurrent exchanges are ongoing. We
employ the following approach (and discuss alternatives in Sec-
tion 4.4), which does not leak any sensitive information to the un-
trusted cloud server. The server assigns a unique ID to each mobile
device, which it displays to its user. The devices prompt the users
to find and enter the lowest ID. The devices then send that ID back
to the server, which can thus perform the grouping. Note that the
actual grouping is not security-sensitive, as an intruder can only
cause denial of service.

Though the current technical limit for our protocols and imple-
mentation is much greater than 10 users, it is unclear that there is
much value in scaling even this far due to human limitations. We
concentrate our presentation on groups of up to 10 users, leaving it
as an open question whether there is a need for protocols that scale
further. As prior work shows, users can reliably count the number
of participants for groups of up to 8 users, but several people start
to make errors for larger groups [10]. As the SafeSlinger proto-
col fails to complete if only a single person miscounts, we set the
threshold at 10 users. Asking users to count the number of partici-
pants rules out several attacks, as we discuss in Section 5.

As abrief protocol description, the mobile devices send a com-
mitment (as described in Section 3.1) to their information to the
server, which redistributes it to the other devices (the server is es-
sentially mimicking the communication network and without per-
forming any trustworthy operations). The users then engage in a
verification of all exchanged information to ensure that they all
possess an identical sets of commitments (to ensure the absence of
MitM and GitM attacks) as well as the correct number of commit-
ments based on the user-entered number of group members. For
the verification, users perform a comparison of a 3-word phrase
that encodes a 24-bit hash value. The words in the 3-word phrase
are selected by using PGP Word List (more details are presented
in Section 6.3). If the word phrases match, the devices engage
in a group-DH protocol (as described in Section 3.2) to derive a
group secret key that is finally used to distribute the decryption keys
among group members that is used to decrypt contact information.

Two problems must be avoided: (1) users may habituate to click
“Match” without performing the word phrase comparison, and (2) an
attacker may compute a collision attack on the short 24-bit hash
value represented by the 3-word phrase. We address (1) by pre-

senting two decoy word phrases alongside the correct word phrase
and asking users to verify which of the three word phrases match
a value on other people’s devices. The position of the matching
phrase is drawn from a different random number generator on each
device to prevent an adversary from predicting the location of the
matching phrase. This forces the user to perform the comparison,
as a random guess by even just a single user will cause the protocol
to fail 2/3 of the time.

We address problem (2) by using Short Authentication Strings
(SAS) [8,17,18,35,37]. In SAS, all devices first commit to the val-
ues that are used in the hash comparison. Once all the commitments
are distributed, the devices reveal the decommitments and the short
hash comparison can proceed. This approach prevents the collision
attack and in Zimmermann’s words [37] converts the attack from a
“safe attack” into a “daring attack.” The collision attack is a safe
attack, because the adversary is certain that the attack will succeed
as a collision has been found. However, with the commitment, the
adversary cannot know ahead of time if the collision indeed will
occur, and the attack only succeeds with probability of 2−n, where
n denotes the bit length of the authentication string, thus resulting
in a “daring attack.” In SafeSlinger,n= 24.

Another challenge that we address in SafeSlinger is to prevent
the server from learning any contact information. We accomplish
this by leveraging a group-DH protocol (described in Section 3.2).
The group DH protocol establishes a shared secret key among all
participants, which is used to encrypt the exchanged information.
To prevent MitM attacks, the DH public key is included in the ini-
tial commitment and thus validated during the hash comparison.
The only information leaked to the server is the IP address used
by the devices. In order to provide anonymity, we could leverage
other anonymous communication systems in addition to SafeSlin-
ger, such as Tor [33]. The following section describes the intricate
details of the SafeSlinger protocol.

4.2 SafeSlinger Exchange Protocol Details
Figure 4 describes the SafeSlinger protocol in detail. For clarity

we separate our protocol into its multi-commitment tree setup and
two rounds of verification.
Multi-Commitment Generation (S1-S3). In Step 1 (abbreviated
S1), the user selects which data to share and enters the total num-
ber of protocol participants. In S2, the device computes the val-
ues needed for the group DH protocol by randomly generating the
ℓ′-bit long DH private keyni (in the current version, we useℓ′ =
512). The device also randomly selects nonces to indicate “match”
(Nonce match,Nmi) and “wrong” (Nonce wrong,Nwi). The device
also encrypts the dataDi to share withNmi used as a symmetric en-
cryption key (using AES with 256-bit keys):Ei = {Di}Nmi . We use
security parameterℓ = 256, and we use SHA-3 (256 bits) as hash
functionH. Figure 3 depicts this multi-value commitment structure
for userUi . Finally, in S3 the device sends the commitmentCi to
the server.
Authenticity Verification Round (S4-S15). In the next phase, the
server groups the users. First, the server sends a unique ID to the
device (S4) which the device displays as it prompts the user to find
the lowest ID amongst all devices (S5). In S6, the user enters the
lowest ID, which in S7 the device sends to the server.

The server now knows which devices belong to the same group,
and distributes ID and commitment pairs(ID i ,Ci) to all group mem-
bers (S8). Once a device receives all commitments, in S9 it opens
up the first level decommitmentHNi ,Gi ,Ei (Figure 3). If validation
of all decommitments is correct (S10), devices compute a hash over
all decommitments ofCi , i.e., over the triplets(HN∗,G∗,E∗), sorted
by the value of the uniqueID i assigned to each device to ensure that
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Figure 3: Multi-value commitment structure for user Ui . Ci ,
HNi , Hm′i , Hwi , Hmi , Nwi , Nmi , are 256-bit values;Gi is 512
bits, and Di varies in length.

all devices compute the hash over the same triplet ordering. Each
device then computes a 3-word phrase that represents 24 bits of the
hash (S11), for which on we use the PGP Word List. The device
also produces two decoy 3-word phrases, which produces two inter-
esting challenges: (1) if the words in the decoy word phrases match
words in the actual word phrase, users may get confused, and (2)
if words in different users’ decoy word phrases match, users may
wrongly select the decoy phrase on their respective devices as a
match. To avoid this, we make sure that the decoy phrases do not
include any words from the actual word phrase, and we also make
sure that all decoy word phrases are mutually exclusive among all
devices, which is a challenge to implement. We address this by
using the received decommitments as a seed to a PRNG, and hav-
ing each device draw words from the word phrase for their decoy
phrases without replacement. Since the word phrase only contains
512 words in total, this limits the total number of users we can
support. More details on the word phrase design are presented in
Section 6.4.

S12 and S13 represent the failure and success cases for user ver-
ification of 3-word phrases, respectively. If no phrase matches, the
user selects “no match”, causing their device to send the “wrong”
nonceNwi (along with Hm′i to enable verification) to the server
(S12). This case is also triggered if the user selects one of the de-
coy word phrases. This approach cryptographically authenticates
the “no match” message based on the commitmentCi and thus pre-
vents injection of an abort message by an adversary. If users cor-
rectly selected the matching word phrase (S13), their device reveals
the pair of values indicating success(Hmi ,Hwi), which the server
redistributes in S14. Each device can verify that all users selected
the correct word phrase (S15). We analyze the success probability
of this verification step in Section 5.
Secret Sharing Round (S16-S20).In S16, the devices proceed to
construct the group DH tree as described in Section 3.2. The order-
ing in the tree is determined by the sorted order of the unique IDs
ID∗. Since the group DH protocol is intricate, we omit the details
for enhanced readability (Section 3.2 preserves more for detail).

Once the secret group keyK is established, the devices then pro-
ceed to send their final match nonceNmi (which also serves as the
decryption key for their dataDi) to the group, encrypted under key
K (S17). In S18, each device decrypts each receivedNmj from the
other devices, verifies its integrity usingCj , and finally usesNmj
to decryptE j to obtain each device’s dataD j in S19. In S20, each
user can validate the identity information from the decrypted data
and save it to his/her address book.

Multi-Commitment Generation
Data Selection & Counting

1. Ui
UI
−→Mi : Di (the data to be exchanged)

Ui
UI
−→Mi : Ñi (number of people in the group)

Commitment, Group DH Key Setup

2. Mi : Nmi
R
←−{0,1}ℓ (“match” nonce)

Hmi = H(Nmi), Hm′i = H(Hmi)

Nwi
R
←−{0,1}ℓ, Hwi = H(Nwi) (“wrong” nonce)

HNi = H(Hm′i ||Hwi) (multi-value commitment)

ni
R
←−{0,1}ℓ

′
, Gi = gni mod p (group DH key)

Ei = {Di}Nmi (encryption of data)
Ci = H(HNi || Gi || Ei) (commitment)

3. Mi → S : Ci
Authenticity Verification Round
Server Unique ID Assignment, User Grouping
4. S→Mi : ID i (unique ID per user)
5. Ui : find lowest unique ID among users→ IDL

6. Ui
UI
−→Mi : IDL (enter lowest ID)

7. Mi → S : IDL
Collection and Distribution of Initial Decommitment
8. S→Mi : ID j ,Cj ( j 6= i)

(other users’ ID and commitment)
9. Mi → S : HNi ,Gi ,Ei

S→Mi : HNj ,G j ,E j ( j 6= i)
(other users’ decommitments)

10.Mi : Cj
?
=H(HNj ||G j ||E j) ( j 6= i) (verify)

Word Phrase Comparison of Integrity of Commitments
11.Mi : WordPhrase([H(HN∗,G∗,E∗)]24) (screen)

Ui
UI
−→Mi : Select Matching 3-Word Phrase

12.Mi → S : if “no match” or wrong phrase selected:
SendHm′i ,Nwi , Abort protocol.

13.Mi → S : else if“match” & correct phrase selected:
SendHmi ,Hwi

14.S→Mi : Hmj ,Hw j ( j 6= i)

15.Mi : HNj
?
=H(H(Hmj )||Hw j) ( j 6= i) (verify)

Abort if any verification failed
Secret Sharing Round
Group DH Key Establishment
16.Mi : Computation of group DH tree

K = Private key of root node (see Section 3.2)
Distribution and Verification of Data Decryption Key
17.Mi → S : {Nmi}K

S→Mi : {Nmj}K ( j 6= i)
18.Mi : Decryption ofNmj ( j 6= i)

Hmj
?
=H(Nmj ) ( j 6= i) (verify)

Decryption of Data and Contact Import
19.Mi : Decryption ofE j with Nmj ( j 6= i)→ D j

20.Ui
UI
−→Mi : Save user dataD j ( j 6= i)

Figure 4: Steps for userUi (i ∈ 1. . .N) to exchange dataDi with

the other N− 1 users via their mobile devices.Ui
UI
−→Mi indi-

cates input by userUi into mobile device Mi . Mi → S repre-
sents wireless communication from mobile deviceMi to server
S. {X}K represents encryption ofX with symmetric key K.

4.3 User Experience
Usability aspects drove many of our design considerations to

make the experience convenient, efficient, and comfortable to use.
SafeSlinger performs the bulk of the protocol operations without
user involvement. The following list shows the required user ac-
tions in a SafeSlinger exchange, Figure 5 provides the correspond-
ing screenshots.



(a) Data Selection (b) Counting (c) User Grouping (d) Word Phrase Com-
parison

(e) Contact Data Im-
port

Figure 5: Secure contact information exchange sequence.

1. Data Selection: The user selects the items of his/her contact
information to share, and presses the “Begin Exchange” button
to start the protocol (Figure 5(a)).

2. Counting: The user counts the number of group members in the
exchange, selects the group size on the dialog, and presses “OK”
to continue (Figure 5(b)).

3. User Grouping: The user sees his/her unique ID (assigned by
the server) and is prompted to enter the lowest ID of any user
participating in the exchange (Figure 5(c)).

4. Word Phrase Comparison: The screen displays three phrases;
each containing three words. The user compares the phrases with
other members, selects the matching 3-word phrase, and presses
“Next” if all members have the same phrase. Otherwise, (s)he
selects “No Match” to abort the protocol (Figure 5(d)).

5. Contact Data Import : The user is prompted to select which
contact entries on the list to import, and into which of his/her
contact accounts (Figure 5(e)).

4.4 Discussion
We now discuss the rationale behind the design decisions we

made. With respect to the server’s grouping approach, we consid-
ered numerous alternatives. The Bump [7] application groups its
members by having two users “bump” their phones together, and
by measuring location, time, and acceleration the server can pair
up the two phones. Although this approach is fun for the users,
we did not use it for numerous reasons: (1) Bump reveals the user
location to the server, which is an invasion of privacy; (2) The ap-
proach is not secure as a malicious bystander can simultaneously
simulate the bump and often be paired with one of the two devices
and steal the user’s contact information [32]; (3) Bump does not
scale to multiple users; (4) Bump cannot be performed among re-
mote users; (5) Acquiring the device’s location can be unreliable
and often has a delay of 10 seconds or more; (6) Bump is often
unreliable and fails to pair devices.

Another alternative for grouping we considered is to use ambient
noise, but this may reveal privacy-sensitive sound to the server, and
may also be unreliable in many circumstances. We finally settled
on the uniqueID assignment by the server, and having users find
and enter the lowestID. This approach is fast and reliable. Based
on theIDs, all the server needs is to end up with a connected graph,
where each device represents a node and an edge is formed by hav-
ing one device send theID of another device to the server. We
considered the approach of having users simply enter anID of any
other intended user, but this may be confusing when multiple users
are present, and it can also lead to a non-connected graph when
there are more than three users. By having users enter the lowest

ID, the resulting graph forms a star topology, which always forms
a connected component with all participants.

We would like to emphasize that the group of members who per-
form a SafeSlinger exchange are not required to later communicate
within the same group. SafeSlinger is only used for acquiring other
users’ information in a secure fashion. Since the contact informa-
tion includes a public key, only that public key is used to subse-
quently establish secure communication. In particular, all crypto-
graphic values created during the exchange (Figure 4) are erased
after the exchange – the sole purpose of their brief existence is to
protect a single exchange. Subsequent secure group communica-
tion can be easily established by using the exchanged public keys
in conjunction with a group DH protocol, regardless of the key ex-
change session during which the public key was acquired. Thus,
there is no mandatory relationship between the group that was used
to exchange the information and subsequent membership selection
for secure group communication.

5. SECURITY ANALYSIS
We will use the list of attacks and challenges from Section 2.5 to

guide this security analysis, along with additional attacks that are
specific to the operations of the SafeSlinger protocol.

We first consider attacks by malicious outsiders (who are not le-
gitimate group members). Such adversaries can contact the server,
ask for a unique ID, and attempt to join arbitrary groups by send-
ing the server a plausible group ID to join. Since users specify the
group size, legitimate clients will detect this attack, as the server
will send too many commitments to the participants.

A more sophisticated version of that attack is where a local ad-
versary jams communication of one of the local devices, and at-
tempt to join the group in place of the jammed user. A similar
attack can be performed by a malicious server, which can split
the group up into different subsets of users, and fake another set
of users (GitM attacks) to ensure that each device encounters the
correct number of devices, even though some are virtual identities
created by the malicious server. Preventing these attacks requires
some amount of user diligence: the users need to ensure that they
perform the hash comparison withall other users. If one member
is singled out by a jammer or malicious server, then that user needs
to inform at least one other user to abort the protocol. As long as
at least one unsuppressed user is diligent, then these attacks will be
prevented. If these attacks are prevented, neither the local jammer
nor the malicious server learns any information about the users, as
they cannot participate in the group DH protocol to discover the
established group keyK. The only way to obtainK is to participate



as a user and inject a commitment, which would be detected by the
devices, as the number of members is larger than the user entered.

A malicious legitimate participant of the group could launch sev-
eral attacks. First, attempts to infiltrate additional virtual members
into the group, for example through a Sybil attack [12], will fail
because the number of virtual members would be larger than the
count of physical members which users enter at the beginning of
the protocol. A Group-in-the-Middle (GitM) attack as described in
Section 2.5 is prevented if users diligently perform the hash com-
parison step, as members who end up in different groups will have
different hashes to compare with high probability. The adversary
could also send malicious contact information for himself, e.g., it
may attempt to impersonate another person who is intended to be
in the group. SafeSlinger defends against this attack by enabling
users to verify at the end of the protocol which of their contact
entries they actually import into their address book, and if a suspi-
cious entry exists the user can attribute that to the adversary. If the
adversary impersonates a user who is present, that user can detect
that someone else injected a duplicate entry for herself and inform
the others.

The multi-commitment with several stages of decommitment (Fig-
ure 3), ensures that no information is revealed unless all mem-
bers Mi reveal their “match” nonce’s hashHNmi , as otherwise
devices will not reveal the decryption keyNmi . Hence, if any
group member detects an anomaly before the hash comparison,
all benign devices will abort the protocol. The multi-commitment
also prevents the simple collision attack on the low-entropy hash
(24 bits) that is used for the comparison, by computing the hash
over the ordered triplets(HN∗,G∗,E∗). Since the commitment
Ci = H(HNi || Gi || Ei) locks in the value of the triplet, an ad-
versary cannot change its triplet or predict any other triplet before
the hash is pre-determined through all users’ choices.

Due to the peculiarities of how the word lists are selected and
to account for potentially complacent user behavior during com-
parison, we next analyze the success probability of a MitM attack
assuming two benign users are engaging in a SafeSlinger exchange.
We will consider different user behavior with respect to the 3-word
phrase comparison, ranging from diligent to lazy.

If either one of the users diligently performs the word phrase
comparison, the success probability is 2−24, offering sufficient de-
terrence against attacks since a human needs to be involved in each
protocol run.

We expect that users will not be completely lazy (i.e., not per-
form the word phrase comparison and simply select one of the word
phrases at random and click “Match”) because the protocol would
fail with probability 2/3 even in the absence of any adversarial ac-
tion. We thus expect that some users will be “partially diligent”
(or “semi-lazy”), and thus expend minimal effort for comparison
to quickly complete the exchange. Assume that two “matching”
word phrasesA= {A1,A2,A3} andB= {B1,B2,B3} on the devices
of users A and B, respectively. In the absence of a MitM attack
A= B, otherwiseA 6= B with high probability.

We now compute the success probability of a MitM attack if
both users are partially diligent, where we assume that the users
compare by finding at least one matching word without confirming
its position. We do assume that the partially diligent users would
abort the exchange by selecting “no match”, or select the wrong
word phrase in case the match is in a decoy word phrase, which
also aborts the exchange. We thus need thatA∩B 6= /0. The proba-
bility P[A∩B 6= /0] = 1−P[A∩B= /0]. All possible combinations
of A equals to

(256
2

)

·
(256

1

)

because two words are chosen from the
“even” list and the other from the “odd” list. The number of com-
binations that will not result in any matching words is
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2

)

·
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)

.

Thus,P[A∩B 6= /0] = 1−
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1 )
∼= 1.94%. This MitM success

probability is optimistic, since matching words might also present
in decoy word phrases, which users can “accidentally” choose, re-
sulting in protocol failure (the attack would not succeed).

Since some partially diligent users may only compare the first
words of the word phrases, we compute the probability that the
first word matches, thus,A1 = B1. We obtainP[A1 = B1] =

1
256
∼=

0.391%.
The success probability for other cases is even lower, thus, we

only present these cases here. Even for the pessimistic case where
both users are partially diligent, the success probability is upper
bounded by 1.94%, which we believe suffices to frustrate adver-
saries from using this attack in practice.

6. IMPLEMENTATION
The current SafeSlinger implementation comprises three com-

ponents: (1) a server application running on Google App Engine
and written in Python, (2) a client application for Android (v2.2
or higher) written in Java, and (3) a client application for Apple
iOS (v5.1.1 or higher) written in Objective-C. SafeSlinger works
well over both cellular and Wi-Fi networks, and has been tested on
several smartphone devices: Motorola Droid 855, Google Nexus
One/S, Samsung Galaxy Nexus, Samsung Galaxy/S2/S3/S4, Ap-
ple iPod Touch, and Apple iPhone 3GS/4/4S/5.

6.1 Key Management using Address Book
We rely on the mobile operating systems’ address book facility

to manage users’ contact data and public keys. It is convenient to
store users’ public key data in a recognizable field in the smart-
phone’s address book, so that any existing synchronization service
will seamlessly maintain backups. We have implemented this func-
tionality by adding the name and value (base-64 encoded informa-
tion) of a new instant messaging (IM) provider to the address book.

At the beginning of an exchange (Figure 5(a)), each user must
identify which contact entry they wish to use as their identity, or
they may create a new entry instead. During the exchange, a user’s
contact information is formatted in the vCard 3.0 standard format3

to be recognizable across multiple platforms. For custom data fields
in SafeSlinger (e.g., public keys), we use the IMPP field type (see
IETF vCard Extensions for Instant Messaging4 proposal) with a
naming pattern so that fields do not require special handling relative
to other contact fields. Our current implementation uses the labels
“SafeSlinger-PubKey” for public keys and “SafeSlinger-Push” for
push notification tokens.

This design offers flexibility and compatibility for mobile app
developers. Other developers can include the exchange of key ma-
terial (or other data made available by SafeSlinger) without the
need to include dedicated support in their applications. Multiple
apps can access exchanged public keys and push tokens directly
from reading the user’s address book without adding additional
storage overhead.

6.2 Secrecy During Data Exchange
All exchanged data is encrypted using AES in CBC mode with

PKCS#7 padding. The encryption keyKD and initialization vec-
tor IVD are derived from the 256-bit “match” nonceNmi : KD =
HMAC-SHA-3Nmi (1), IVD = HMAC-SHA-3Nmi (2). Contact data
integrity is achieved through verification of the commitmentCi ,
hence, no additional Message Authentication Code (MAC) is needed.

3http://tools.ietf.org/html/rfc2426
4http://tools.ietf.org/html/rfc4770



We use SHA-3 (Keccak) [4] since previous hash algorithms, such
as MD5 and SHA-1, have been successfully attacked in either the-
oretical or practical aspects.

Recall from Section 4 that the “match” nonceNmi is distributed
in encrypted form usingK (the shared secret resulting from the
group DH key establishment). We use AES-CBC with PKCS#7
padding, where the AES key is derived from the group DH keyK
as follows: KCBC = HMAC-SHA-3K(1). Since we can validate
Nmi based on the commitmentHmi , no additional MAC value is
needed to ensure integrity.

6.3 Word Phrase Verification
Once all data has been exchanged, it must be verified to ensure

the integrity of the exchange. Each device computes a hash of the
ordered set of all data exchanged in the protocol. This hash is trun-
cated and represented to the user as a 3-word phrase, with words
taken from the PGP Word List. We design this phase to discourage
careless comparison.

In SafeSlinger, the word phrase is constructed from the first 24
bits of the 256-bit SHA-3 hash, as indicated in Step 11 of Figure 4.
We use the standard PGP approach for converting a 24-bit value
into 3 words. PGP uses two word lists – an “even” and “odd” list
– with 256 words each. Based on the standard PGP approach, the
first 8 bits select a word in the “even” list, the second 8 bits select a
word in the “odd” list, and the final 8 bits select another word from
the “even” list.

We discourage careless comparison by displaying two unique de-
coy phrases in addition to the common phrase. In this way, users are
forced to compare phrases with at least one other user and actively
choose which phrase matches among them. However, to prevent
attacks, all users need to validate that they all have the same word
phrase. The word phrase provided in this exchange enables out-
of-band verification for users in close proximity where they may
view each other’s screens, or via telephone or teleconference (or
any other communication medium where humans can authenticate
one another, e.g., by recognizing a familiar voice), where the users
can read their word phrases aloud. In some social contexts, it may
be considered impolite to look at or take a picture of another user’s
phone, and thus this protocol also enables screen privacy and com-
parison of phrases through comfortable conversation.

6.4 Word Phrase Collision Avoidance
If a word in our decoy word phrases is the same as in the actual

word phrase, users may get confused and select the decoy word
phrase as the match. Moreover, the words in a decoy phrase may
match the words in a decoy phrase on another device, causing the
user to select the decoy phrase which results in an error detected by
the local device.

We thus want to select decoy phrases to prevent careless users
from choosing the wrong phrase if the actual hash phrase and either
of the decoy phrases contain the same word in the same position.
Hence, we choose our decoy phrases deterministically such that
each decoy word will be unique across all decoy phrases displayed
in the group. After computing the actual word phrase, we mark
those words as used. Each device will then compute the decoy
phrases for all devices, such that no decoy phrase has any matches
with any other decoy phrase nor with the actual word phrase.

7. MOBILE APPLICATIONS
We have leveraged our key exchange protocol to create a secure

messaging application that supports both text and file exchange
across different platforms. We now discuss these applications, and
describe an application for providing secure introductions.

(a) Message composition (b) Message list

Figure 6: Secure Messaging Screenshots.

7.1 Secure Rich Messaging Implementation
We have implemented secure rich messaging for Android and

iOS (Figure 6). Secure information and shared public keys via
SafeSlinger are used to encrypt and authenticate text messages and
file data. When SafeSlinger is first installed, it generates 2 RSA
2048-bit key-pairs and requests a push token to serve as that de-
vice’s identity for the Push Notification service. During a SafeSlin-
ger exchange, the push tokens of all group members are exchanged
and imported to the address book alongside the public keys.
Message Secrecy and Authenticity.For data (simple text or files)
encryption and authentication, we choose the PKCS#7 encryption
format.5 Our implementation uses the open cryptographic library
PolarSSL6 for both smartphone platforms. One alteration was to
use SHA-3 as the hash algorithm for our RSA signature generation
instead of SHA-1. Files to be included in a message are formatted
as a separate PKCS#7 message, and downloaded independently by
the receiving device.
Push Message Notification.To avoid text-messaging charges and
conserve battery energy, we make use of smartphone operating sys-
tems’ support forpush notificationsto deliver message data. Rather
than requiring each application developer to implement a back-
ground task to keep a separate connection to their server to poll
for updates, push notifications are an OS-provided unified update
service in which the OS maintains one connection to its own ser-
vice. Then, each developer can register their application with the
OS’ service, and the OS only needs to maintain one connection to
check for updates across several applications.

We use the native push notification services offered by each smart-
phone’s operating system. Any push notification service may change
the push token of the device over time. This presents an issue sim-
ilar to circumstances where a user may want to generate a new set
of key-pairs and wishes to revoke older keys. In either case, we
are currently testing an implementation to securely share the up-
dated push tokens and public keys with past exchange participants
to improve the user experience.

7.2 Secure Introduction
We leverage the secure rich messaging mechanism to enablese-

cure introductions, where a common friend of two users sends those
users’ respective contact data (including public keys and push to-
kens) to each other. More concretely, consider Alice with two
friends: Bob and Carol. Alice has performed direct SafeSlinger

5http://tools.ietf.org/html/rfc5652
6https://polarssl.org



exchanges with both Bob and Carol. Alice has thus received au-
thentic SafeSlinger public keys for both Bob and Carol. Likewise,
both Bob and Carol have Alice’s authentic SafeSlinger public key,
but do not otherwise share information.

In a secure introduction, Alice’s device first encodes Bob’s con-
tact information (which includes Bob’s SafeSlinger public key and
push token) as a custom vCard and uses the secure message for-
mat to provide secrecy and authenticity. Alice’s device then en-
codes Carol’s information in the same way. Alice’s device then
sends (via SafeSlinger) the message containing Bob’s information
to Carol, and the message containing Carol’s information to Bob.
Hence, Bob and Carol can each validate that the received infor-
mation indeed originates from Alice, whom they each trust not to
send false information. Now that Bob and Carol have each other’s
public keys and push tokens, they can use SafeSlinger to securely
communicate with each other directly. Bob and Carol have thus
successfully built a trust relationship through secure introduction.

The above example with Alice, Bob, and Carol illustrates one-
hop transitive trust: Alice is the “hop” between Bob and Carol.
Presently, we only support one-hop secure introductions, and we
enforce that both links used in a secure introduction were performed
by direct SafeSlinger exchange. Note that these issues represent
policy concerns; there is no obstacle to constructing a messaging
protocol that supports an arbitrary number of transitive links.

In the SafeSlinger secure introduction implementation, each user
picks any two contacts with whom they have performed a direct
SafeSlinger exchange before (Figure 7(a)). When an invitee re-
ceives an invitation, his/her device verifies the message, i.e., to
check that it comes from a user with whom they have performed
a SafeSlinger exchange before. Finally, a dialog presents the chain
of SafeSlinger exchanges to the introduced user (Figure 7(b)), and
prompts for final confirmation before importing the contact.

8. EVALUATION
To evaluate the usability of SafeSlinger for daily usage and the

willingness to use SafeSlinger for added security and privacy; we
conducted a user study with 24 participants. We selected Bump as a
baseline application since it is the most popular contact information
exchange application available for both Android and iOS.

8.1 Procedure

(a) Secure Introduction fea-
ture panel for selecting re-
cipients.

(b) Dialog displays chain
of SafeSlinger exchanges
from recipient to invitee.

Figure 7: Secure Introduction Screenshots.

We ran three instances of the same study and for each instance,
we recruited 8 participants to measure the effectiveness of contact
exchanges with varying group sizes. We provided a mobile device
to each participant to minimize the risk of exposing the participant’s
privacy-sensitive data on his/her own phone. For each instance, we
used 3 iPhones and 5 iPod Touch devices. We pre-installed Bump
and SafeSlinger on all devices and configured them to use wireless
access points for communication. For added privacy protection, we
assigned a fictitious identity to each participant.

We used a within-subjects design and asked study participants
to run Bump and SafeSlinger to exchange contact information. To
minimize biases and learning effects, we alternated the order of the
applications; i.e., in one instance, a set of 8 participants performed
Bump before SafeSlinger, and in the other instance, a different set
of participants performed SafeSlinger before Bump.

To evaluate the usability for group key exchanges, we asked par-
ticipants to form small groups of 2 members and run the application
to collect the other group member’s contact information. We asked
participants to repeat with a different partner once more. Then, we
asked participants to form groups of 4 members, and run the ap-
plication to collect all other group members’ contact information.
We asked them to repeat with different group members once more.
Finally, we asked participants to form a large group of 8 members
and run the protocol twice.

When participants finished running both Bump and SafeSlinger,
we asked them to complete a brief survey. After the study, we ran
a raffle to select two participants and gave iPod Nanos as prizes.
Demographics. We recruited participants from a university mail-
ing list, and we selected 24 participants who have been using smart-
phones for at least 2 years. The participants’ age range was 21–39
(µ = 26.9,σ = 5.3), and 17 were male and 7 were female. Among
24 participants, 18 were students and 6 were professionals. In terms
of ethnicity, 16 were Asian, 6 were Caucasian, and 2 were His-
panic. For their current phone model, 11 participants were using
the iPhone and 13 were using an Android-based smartphone.

8.2 Results and Observations
We measured the total amount of time and bandwidth that par-

ticipants consumed to complete the contact information exchanges
for varying group sizes.

Figure 8 shows the timing analysis. According to this figure,
participants took less time (about 50%) to exchange contact in-
formation using Bump than using SafeSlinger for the small group
size (of 2). This indicates that participants found Bump easier and
faster to operate for the small group size. However, as the group
size increased, the execution time increased quadratically for Bump
whereas SafeSlinger had linear increase. For example, four users
spent more than 1 minute and eight users spent almost 4 minutes to
exchange information using Bump since only two people can bump
at once. Also, numerous Bump exchanges kept on failing. For
SafeSlinger, on the other hand, four users spent only 27 seconds
to exchange their contact information, and eight users spent only
39 seconds. These results demonstrate the efficiency and usabil-
ity of SafeSlinger for exchanging contact information compared to
Bump.

Figure 8 also presents the standard deviation of the execution
time in Bump and SafeSlinger, and SafeSlinger resulted in a small
standard deviation since participants performed SafeSlinger with
very few errors; only 1 error occurred for the instance with a large
group size during the entire study. For Bump, however, participants
needed to repeat running the protocol due to various types of errors,
such as connection failure or fetching wrong contacts. In contrast



Table 1: Means and paired-samples T-test results from participants’ feedback. The higher mean that is statistically significant from
the other is highlighted in bold. For all results,N = 24.

Easy to use Annoyance Security of app. Likely to use
min:1 max:5 min:1 max:5 min:1 max:5 min:1 max:5

Bump 3.3±1.4 3.8±1.1 2.3±1.1 2.4±1.1
SafeSlinger 4.2±1.1 2.1±1.0 4.3± .7 3.6±1.1

T-test t(23) = 2.6, p= .015 t(23) = 6.1, p< .0001 t(23) =−7.6, p< 0.0001 t(23) = 5.1, p= .139

with Bump, SafeSlinger led to minimal deviation even though it
required more user interactions to complete the protocol.
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Figure 8: Average execution time for contact exchange in vari-
ous group sizes using Bump and SafeSlinger.

Participants experienced security and privacy vulnerabilities of
Bump during our study; since we conducted each instance of the
study in a single room, participants experienced receiving wrong
contact(s)’ information if they happened to bump around the same
time. Consequently, participants became noticeably frustrated dur-
ing the Bump experiments. On the other hand, participants did not
experience any security or privacy vulnerabilities using SafeSlin-
ger.

Bandwidth is a limited resource given that mobile users have
limited data plans. Hence, we measured the amount of data usage
on each mobile device during the user study, and the results show
that each device uses at most 11 KBytes for an exchange between
2 people and 65 KBytes for an exchange among 8 people. For
comparison purposes, we also measured data usage for different
apps on Android and iOS devices, and we found that: (1) playing
a YouTube video requires over 10 MBytes per minute, (2) a voice-
only Skype call requires around 0.9 MBytes per minute, and (3)
reading an article (including text and images) on the Yahoo news
website consumes about 350 KBytes per minute on average. Thus,
SafeSlinger has modest bandwidth requirements for an exchange.

8.3 Feedback from Participants
At the end of the study, we asked 5-point Likert scale questions

to get further feedback. For all the statistical analyses in this sec-
tion, we used paired-samples T-tests and Table 1 summarizes the
means and the T-test results.

We asked how easy participants found each application to use
(1: very challenging to use, 5: very easy), and participants men-
tioned that SafeSlinger waseasierto use than Bump with statisti-
cal significance. We also asked how annoying participants found
each application to use (1: very pleasant, 5: very annoying), and
participants responded that Bump wasmore disturbingto use than
SafeSlinger with statistical significance. For the security measure-

ment, we asked how secure participants felt that only the intended
recipients received their contact information using Bump and Safe-
Slinger, and participants answered that they feltmore securewhile
using SafeSlinger than while using Bump with statistical signifi-
cance. In terms of likeliness to use in near future (1: very unlikely
to use, 5: very likely), participants provided the answers that they
aremore likelyto use SafeSlinger than Bump with statistical sig-
nificance. Based on the participants’ feedback, we can conclude
that SafeSlinger is usable for daily use with enhanced security and
privacy as compared to Bump.

9. RELATED WORK
Closely related research by Asokan-Ginzboorg [2], Abdalla et

al. [1], Valkonen et al. [34], and Laur and Pasini [19] provides tech-
niques for secure local establishment of a shared secret key without
relying on a PKI or any prior trusted information. Unfortunately, a
secret shared among nodes cannot be used to provide integrity and
authenticity for exchanged messages, because any malicious group
member with the key could have created that message. Therefore,
a shared secret is insufficient for secure exchange of authentic in-
formation. In particular, GitM attacks are possible, exploiting the
absence of message authenticity.

PGP key-signing parties [6] enable users to obtain each other’s
public key, but they are cumbersome for participants. SafeSlinger
can be viewed as a more modern and usable approach using smart-
phones to securely exchange public keys.

Silent Circle [27] is a recent end-to-end secure communication
system for both iOS and Android platforms, providing data encryp-
tion for different services, e.g., email, VoIP, and text messaging.
Silent Circle enables key exchange between users based on DH,
and adopts Short Authentication Strings (SAS) to defend against
MitM attacks. Since their implementation is proprietary, one can-
not verify the security of their system.

The OTR protocol [5] is a cryptographic protocol to secure com-
munication for instant messaging services. Similar to SafeSlin-
ger, OTR provides authentication and secrecy for messages, but
in addition also provides perfect forward secrecy and repudiabil-
ity. OTR requires that communicating parties initially know each
other’s public keys, which could be provided by SafeSlinger. Simi-
larly, SafeSlinger could use OTR’s approach to provide perfect for-
ward secrecy and repudiability.

The most closely related works provide secure group-based ex-
change of contact information: GAnGS [10], SPATE [21], and
Nithyanand et al. [26].

Nithyanand et al. recently studied the usability of secure group
association protocols [26]. Their results with user studies conclude
that the ideal group credential exchange protocol does not use a
leader (i.e., is peer-based), requires users to count and input the
number of participants, and requires users to verify Short Authen-
tication Strings (SAS). Hence, their study confirms the approaches
we have selected for SafeSlinger.

The GAnGS protocol [10] was designed to scale trust establish-
ment to large groups of users. Unfortunately, GAnGS requires
users to perform many operations and is thus cumbersome to use.



Figure 9: Average execution time for contact exchange in vari-
ous group sizes using GAnGS, SPATE, and SafeSlinger.

SPATE [21] was designed for contact exchange in smaller groups
(8 or fewer people). SafeSlinger offers numerous improvements
over these prior systems: (1) GAnGS and SPATE require the ac-
quisition of a 2D barcode displayed by another phone, which can
require a significant amount of time, especially in some lighting
conditions such as bright sunshine; (2) GAnGS and SPATE use a
visual hash function for users to perform comparison of the hash
values – such a visual hash cannot support remote execution and
enables users to simply click “match” without actually performing
the comparison; (3) GAnGS and SPATE require leader selection
among a group of participants, which may be burdensome for peo-
ple during the exchange; (4) GAnGS and SPATE enable bystanders
to learn everyone’s contact information, disclosing potentially sen-
sitive private information. SafeSlinger offers significant improve-
ments by addressing all these issues. In particular, the privacy pro-
tection achieved with the group DH protocol is critical for people
who want to protect their privacy, even from a potentially malicious
server.

In terms of efficiency of contact exchange (i.e., the average ex-
ecution time to perform an exchange among varying group sizes),
GAnGS requires significantly more time for a group exchange than
SPATE or SafeSlinger: GAnGS takes over two minutes even for
just 3 users as shown in Figure 9. (Note that the minimum group
size supported in GAnGS is 3 instead of 2.) SPATE is markedly
close to SafeSlinger’s speed. For a smaller group of 2 or 4 users,
SPATE is the most efficient protocol among all existing systems.
SafeSlinger requires more time for the exchange because SafeSlin-
ger’s design involves more participant effort to eliminate SPATE’s
disadvantages as mentioned above. Figure 9 also shows the stan-
dard deviation of the execution time in all schemes. Compared to
GAnGS, SafeSlinger and SPATE resulted in a small standard devi-
ation since the SPATE and SafeSlinger protocols are more efficient
and require fewer user interactions to complete.

Many researchers have studied device pairing or key setup be-
tween two devices [3, 7, 9, 13, 20, 22, 29]. These systems, however,
do not generalize to more than two parties, as they would encounter
the issues we describe in Section 2.5.

10. CONCLUSION
To realize the vision of secure online communication, we need

to overcome several human challenges: some users are ambivalent
about security or privacy, most users lack security expertise, and

many users prefer convenience over security and may not want to
expend much effort for security.

To overcome these challenges, we designed SafeSlinger as an
easy-to-use application that offers many benefits to drive usage. Per
Metcalfe’s law, the utility of a system grows with the square of the
number of users. Our goal is thus to provide immediate utility to
enable epidemic growth.

We achieve immediate utility through the robust exchange of
contact list information between different smartphone platforms,
which does not require any location information or leakage of pri-
vate information outside the participating phones. SafeSlinger also
provides secure messaging and file transfer that is immediately us-
able. SafeSlinger supports secure local and remote exchange of
contact list information, setting up a secure channel between users.

We have released the SafeSlinger application both for Android
and iOS devices with the intention to provide a free and easy-to-
use system that enables secure communication. We publish the full
documentation and source-code to enable independent verification
of all security operations. With these steps, we anticipate that Safe-
Slinger will help to bring secure communication to the masses, so
that people can enjoy secret communication and validate the origin
of messages with confidence.
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