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Abstract. We describe the design of Grey, a set of software extensions
that convert an off-the-shelf smartphone-class device into a tool by which
its owner exercises and delegates her authority to both physical and vir-
tual resources. We focus on the software components and user interfaces
of Grey, highlighting the features of each. We also discuss an initial case
study for Grey, in which we are equipping over 65 doors on two floors of
office space for access control using Grey-enabled devices, for a popula-
tion of roughly 150 persons. Further details of Grey, and this and other
applications, can be found in a companion technical report.

1 Introduction

Access control today is characterized by an expanse of mechanisms that do not
interoperate and that are highly inflexible. Access to physical resources (e.g.,
home, office) is most commonly tied to the possession of a hardware key, and in
office environments possibly a swipe card or RFID card. By contrast, access to
virtual resources is typically tied to the knowledge of a password and/or posses-
sion of a physical token (e.g., SecureID) for producing time-varying passwords.

In this paper we introduce the Grey system, which utilizes converged mobile
devices, or “smartphones”, as the technology of choice for unifying access control
to both physical and virtual resources. We focus on smartphones for two central
reasons. First, their nearly ubiquitous adoption is inevitable, as in the long term
they stand to inherit the vast cellular phone market, which in 2004 shipped over
648 million units [30]. Second, the hardware capabilities of smartphones and the
maturity of application programming environments for them have advanced to
a stage that enables applications to take full advantage of rich computation,
communication, and interface capabilities (e.g., a camera).

This convergence of market trends and technological advances points to a fu-
ture marked by pervasive adoption of highly capable and always-in-hand smart-
phones. Grey is an effort to use this platform to build a ubiquitous access-control
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technology spanning both physical and virtual resources. This vision is not ours
alone: several groups have experimented with the use of mobile phones as digital
keys [9, 26]; NTT Docomo is conducting trials on the use of mobile phones to au-
thorize entry to apartments�; and mobile phones can already be used to purchase
items from vending machines in several countries. However, to the extent that
we can infer the capabilities of these systems, we believe that Grey presents a
more sound and flexible platform for building a ubiquitous access-control system
and, eventually, for experimenting with advanced mobile applications.

As an example of the type of flexibility not possible in other solutions, with
Grey a user will be able to easily create and lend to her friend a temporary,
virtual key to her car or apartment; this will happen seamlessly regardless of
whether the user and her friend are standing next to each other or thousands of
miles apart. Similarly, a manager could give to her secretary temporary access
to her email without revealing any information (e.g., passwords) that could be
used at a later time or to access a different resource. Going further, a user could
specify that his office may be accessed by any three of his colleagues acting
together, but at least three would have to cooperate to gain access.

Grey is a novel integration of several technologies that results in a single tool
for exercising and delegating authority that we believe is far more secure, flexible
and usable than any alternative available today. At the core of Grey is a flexible
and provably sound authorization framework based on proof-carrying authoriza-
tion (PCA) [3], extended with a new distributed proving technique that offers
significant efficiency advances [7]. In addition to enabling a user to exercise her
authority, PCA provides a framework in which users can delegate authority in
a convenient fashion. For protection of phone-resident cryptographic keys in the
event of phone capture, Grey incorporates capture resilience [22], which renders
a lost or stolen phone resistant to misuse. And, on the user-interface front, we
employ a technique for conveying key material and network addresses, that is as
simple as taking a picture with the phone’s built-in camera [23, 29]. Phone-to-
phone and phone-to-infrastructure data communication utilizes an asynchronous
messaging layer that we have developed to take advantage of the myriad network-
ing technologies available to modern smartphones, including Bluetooth, cellular
data service (e.g., GPRS), and messaging protocols (e.g., SMS and MMS).

In this paper we describe the adaptation of these components into a practical
access-control system called Grey. At the time of this writing, we are deploy-
ing Grey to create a platform for future research on practical smartphone-based
access-control systems. Our initial deployment on two floors of a new building on
our university campus will involve roughly 150 users and consist of two applica-
tions: (1) controlling access to 65 offices by Grey-enabled phones; (2) using Grey
for accessing Windows XP sessions. In these applications, Grey offers a more
secure, flexible and convenient basis for access control than existing solutions.

Due to space limitations, we were forced to omit the descriptions of several
important aspects of Grey. For more detail, including a thorough discussion of
related work, a more comprehensive description of the software architecture,

� http://www.i4u.com/article960.html
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more extensive performance results, and a description of the Grey Windows XP
login plugin, please see our companion technical report [6].

2 Component Technologies

Grey is a novel integration of a number of recently-developed technologies that
utilize the capabilities of modern smartphones; we summarize these component
technologies here.

2.1 Graphical Identifiers

A common feature of modern smartphones is a camera. In Grey we utilize this
camera as a data input device for the smartphone, e.g., by asking the user to
take a picture of an item she intends to interact with. Information conveyed by
photographing two-dimensional barcodes is a theme common to several ubiqui-
tous computing efforts (e.g., [13, 28]), typically to convey service information or
a URL where such information can be obtained. In Grey, there are two types
of identifiers that are commonly input via the camera:

An identifier for a public key. A useful identifier for a key is the collision-
resistant hash of the key (e.g., [20]). In Grey, a two-dimensional barcode is
used to encode the hash of a public key and can be displayed on a sticker at-
tached to an item (e.g., on a door) or, for a device with a display (e.g., smart-
phone or computer), presented on the display. A camera-equipped smart-
phone can then photograph this identifier and authenticate the public key
obtained by other means (e.g., over a wireless link) [23]. This provides a
natural and user-friendly way for obtaining an authentic public key.

A network address. A barcode can also be used to encode a network address.
As above, a camera-equipped smartphone can then obtain the network ad-
dress by photographing the barcode. This idea has been utilized to circum-
vent high-latency device discovery in Bluetooth [29], and we use it in this
way in Grey. In addition, this idea offers similar usability advantages to that
above, as it is an intuitive operation for a user to photograph the device with
which she intends to communicate.

The pervasiveness of graphical identifiers in Grey lends itself well to graphical
management interfaces for collecting identifiers and managing access. We will
provide an overview of the interfaces we have developed in Section 4.

2.2 Capture-Resilient Cryptography

A user’s Grey-enabled smartphone utilizes a private signature key in the course
of exercising the user’s authority. The capture of a smartphone thus risks per-
mitting an attacker who reverse-engineers the smartphone to utilize this private
key and, as a result, the user’s authority. To defend against this threat, Grey



434 Lujo Bauer et al.

capture protects the phone’s private key [22]. At a high level, capture protection
utilizes a remote capture-protection server to confirm that the device is being
held by the person who initialized the device (e.g., using a PIN, face recognition
via the phone’s camera, or other biometric if the phone supports it), before it
permits the key on the phone to be used. This server can also disable the use of
the key permanently when informed that the device has been lost, or temporar-
ily to protect the key from an online dictionary attack on the PIN (or other
authentication technique). At the same time, this capture-protection server is
untrusted in that it gains no information about the user’s key.

In keeping with the theme that Grey is a wholly decentralized system, the
capture-protection server is not a centralized resource. That is, each user can
utilize her own capture-protection server (e.g., her desktop computer), and in-
deed there is no management required of this server in the sense of establishing
user accounts. Rather, this server need only have a public key that is made avail-
able to the user’s phone when the phone’s key is created—perhaps by taking a
picture of it displayed on the server’s screen, as described in Section 2.1—and
must to be reachable when the phone needs to utilize its private key.

A concern that arises with the use of a phone for exercising personal authority
is the sheer inconvenience of losing one’s phone, in the sense of being unable to
exercise one’s own authority. While this can occur with any form of access control
that utilizes a token or other hardware, we note that capture protection provides
a remedy. Since the capture-protection server ensures that a key can be used only
by a device in possession of the person present when the key was created, a user
may back up her key with little risk of exposing it in an indefensible way.

2.3 Proof-Carrying Authorization

Prior research in distributed authorization has produced a number of systems [27,
16, 15, 10] that provide ways to implement and use complex security policies that
are distributed across multiple entities. Gaining access to a resource typically
involves locating and gathering credentials and verifying that a set of credentials
satisfies some access-control policy. Both the gathering and the verification is
typically carried out by the entity or host that is trying to decide whether to
allow access.

These credentials and the algorithms for deciding whether a set of credentials
satisfies some security policy can be described using formal logics (e.g., [1, 18]).
In early work in this vein, the design of access-control systems starts with the
specification of a security logic, after which a system is built that implements as
exactly as possible the abstractions and algorithms that the logic describes [31,
5]. While this approach can dramatically increase confidence in the systems’
correctness [2], at best the system emulates the access-control ideal as captured
in the formal logic. That is, since the correspondence between the formal logic
and the implementation is only informal, any guarantees derived from the formal
logic might fail to extend to the implemented system.

An alternative introduced in the concept of proof-carrying authorization
(PCA) [3, 8] is to utilize this formal logic directly in the implementation of
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the system. In PCA the system directly manipulates fragments of logic that rep-
resent credentials; the proofs of access are likewise constructed directly in formal
logic. This integration of formal logic into the implemented system provides in-
creased assurance that the system will behave as expected. This is the high-level
approach that we adopt in Grey. As such, each Grey component (including a
smartphone) includes an automated theorem prover for generating proofs in the
logic, and a checker for verifying proofs.

A fundamental tension in access control is that the more expressive a sys-
tem is (that is, the greater the range of security policies that its credentials
can describe), the more difficult it becomes to make access-control decisions.
To ensure that the access-control decision can always be made, most systems
restrict the range of security policies that can be expressed, ruling out many
potentially useful policies. Since Grey is meant to be used in a highly hetero-
geneous environment and supports ad-hoc creation of policy components, this
type of inflexibility could be very limiting. An insight behind PCA is that the
access-control policy concerning any particular client is likely to be far simpler
to reason about than the sum of all the policies of all clients. PCA takes advan-
tage of this insight by making it the client’s responsibility to prove that access
should be granted. To gain access, a client must provide the server with a logical
proof that access should be allowed; the server must only verify that the proof
is valid, which is a much simpler task. The common language in which proofs
are expressed is a higher-order logic [11]; when constructing proofs, each client
uses only a tractable subset of the higher-order logic that fits its own needs. The
mechanism for verifying proofs is lightweight, which increases confidence in its
correctness [4] and also enables even computationally impoverished devices to
be protected by Grey.

3 A Usage Scenario

Grey’s integration of the technologies described in Section 2 (and others) enables
a range of interactions that enhance access control to render it more user friendly,
decentralized and flexible. To illustrate this, we describe an example scenario
that utilizes several of the pieces we have introduced.

The scenario we consider begins with two researchers, Alice and Bob, who
meet at a conference and begin a research collaboration. Anticipating communi-
cating electronically when they return to their home institutions, each enters the
other in his/her smartphone “address book”. To populate her address book en-
try for Bob, Alice needs merely to snap a picture of the two-dimensional barcode
displayed on Bob’s phone. The barcode encodes both the Bluetooth address of
Bob’s phone, enabling Alice’s phone to connect to it, and a hash of Bob’s public
key, which can be used to authenticate the full key that is transferred via Blue-
tooth along with Bob’s contact information. After Alice returns to her home
institution, her phone automatically synchronizes its address book with her PC.
This could permit her, for example, to authenticate electronic mail from Bob
using standard protocols (e.g., [25]).



436 Lujo Bauer et al.

As their submission deadline approaches, Alice and Bob decide to meet in
person, and so Bob makes plans to visit Alice. On the day that Bob arrives at
Alice’s institution, Alice is delayed at home. Bob thus arrives to Alice’s locked
office door. Inside the glass next to Alice’s door is a barcode sticker that encodes
the Bluetooth address of a computer that can actuate Alice’s door to open, if
convinced to do so. Bob photographs the barcode, prompting his smartphone
to connect to the computer, which challenges Bob’s phone to prove his rights
to access the door—a feat which his phone cannot do alone, since Bob lacks
the needed credentials. The theorem prover in his phone, however, discerns that
Alice’s phone could assist, and initiates a communication with it.

Fig. 1. Bob entering Alice’s office. In the
course of proving access, Bob’s phone con-
tacts Alice’s phone for help.

Upon receiving Bob’s phone’s re-
quest, the theorem prover in Alice’s
phone automatically generates sev-
eral options by which Alice can per-
mit Bob to enter the door, based on
credentials that she has previously
created and that are stored in the
phone: she can (i) simply grant him
a credential to open the door only
this time; (ii) add him to a group
visitors that she previously cre-
ated and granted rights to, among other things, open her door; or (iii) give
him the rights of her secretary, to whom she also granted the ability to open
her door. Alice’s phone presents this list to Alice, who selects (ii). The phone
then signs a credential to this effect and returns it to Bob’s phone, enabling it
to complete the proof of access.

It is worthwhile to reflect on the presentation of this process to each of Alice
and Bob. Bob, upon photographing the door barcode, is asked to enter a PIN in
order to utilize his private key to sign a request to open the door—an operation
protected by capture protection; see Section 2.2—and the door opens with no
further interaction (albeit with some waiting while Alice makes her decision).
Alice is consulted merely with a list offering her several options by which she can
permit Bob to enter her office. Upon selecting one and also typing her PIN—
again to activate her capture-protected key—her task is completed.

Bob’s credential indicating that he is a member of Alice’s visitors group
turns out to be handy while he awaits Alice’s arrival. In addition to permitting
him to open Alice’s office, it could grant his laptop access to the campus 802.11
network, to the floor printer, and to a back room where there is a vending
machine with snacks and sodas. All these privileges are afforded to Bob due to
Alice’s prior creation of credentials that grant these privileges to her visitors.

4 Software Architecture

At a high level of abstraction, every Grey host or device is composed of some sub-
set of the following elements: a compact and trustworthy verifier that mediates
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access to a protected resource; an extensible prover that attempts to construct
proofs of access; a lightweight, asynchronous communication framework that fa-
cilitates the distributed construction of proofs and management of certificates
(for details please see our companion technical report [6]); and a collection of
graphical interfaces that allows the convenient and seamless integration of Grey
into everyday life. Grey is implemented in Java, which allows it to easily extend
across multiple platforms (workstations, smartphones, embedded PCs, etc.) and
operating systems.

4.1 Graphical User Interfaces

An emphasis in Grey is usability. In this subsection we describe the primary user
interfaces involved in Grey at the time of this writing.

In order to maximize our user population, we have targeted Grey for the
widest range of smartphones possible, including those of modest size—and cor-
respondingly modest screen size. For example, our primary development platform
to date has been the Nokia 6620, a smartphone with dimensions 4.28×2.29×0.93
inches and a 176× 208 pixel display. Due to the limited screen size on this class
of smartphones, we have divided tasks into those performed on the phone by
necessity, and those that can be offloaded to a companion tool run on a personal
computer, after which the necessary state can be transferred to the phone via a
synchronization operation. At a high level, tasks such as the creation of groups
and roles (as defined in [20]), and proactive policy creation, are offloaded to the
companion tool. Because these tasks are standard in a variety of access-control
settings, here we focus on the phone-resident interfaces, as these are the ones
that we believe to be more innovative.

The tasks performed on the smartphone with user interaction include: col-
lecting identifiers (of persons, keys, or addresses); making an access request to a
resource; and reactive policy creation, i.e., responding to a request for a creden-
tial to permit another person to complete an access proof.

Address book The first of these tasks, building an address book of identifiers
and bindings among them, is performed using the camera and the keypad of
the phone. As described in Section 2.1, the identifiers that can be input via the
camera include pictures of public keys (and of network addresses, but these are
not involved in address-book creation). The keypad permits the input of text
strings. The address-book interface enables the creation of speaks-for relation-
ships between names and keys: a user photographs the key and then either selects
an already-present identifier for which the key speaks or inputs the identifier at
that time. After a user photographs the two-dimensional barcode encoding a
key, the key is permanently hidden from the her. While user-friendly represen-
tations of keys using “snowflakes” [17, 21], flags [14] or random art [24] have
been proposed, we believe that exposing keys in the interface is unnecessary and
potentially confusing.

Requesting access to a resource A user requesting access to a resource for the
first time must obtain the network address of the computer that controls access
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to that resource. Collecting this network address can presently be done in two
ways: either with Bluetooth discovery or, as discussed in Section 2.1, using the
phone’s camera to photograph a two-dimensional barcode encoding the Blue-
tooth address (Figure 2). The latter technique is more reliable, since Bluetooth
discovery can net multiple devices, and selecting the proper device is a user
choice that is vulnerable to misinterpretation or the user being misled. Once the
network address for a resource is captured, it is kept in a resource menu on the
phone. A single click on a resource in this menu initiates an attempt to connect
to the corresponding computer and start the sequence to access the resource (see
Figure 3).

Fig. 2. Bob learns the Bluetooth address of
Alice’s door by taking a picture of the two-
dimensional barcode visible near Alice’s door.

Perhaps the most innovative as-
pect of this part of the user in-
terface is its use of learned pat-
terns of resource accesses. Most
users exhibit a pattern of accesses;
e.g., a typical workday begins with
the user opening a building door,
then a door on the floor on which
she works, then her office door, and
finally logging into her desktop com-
puter. If all these resources are ac-
cessed using Grey, the user’s smartphone will learn the temporal proximity and
order of these accesses as a pattern, and can offer this pattern as an option when
the user initiates the first access in the pattern (e.g., Work Garage to HH D202 PC
in Figure 3 is such a pattern). If the user selects the pattern, the phone will at-
tempt to connect to and access each of the resources in sequence, with each step
contingent on the previous access in the pattern succeeding. In this way, merely
two clicks and a PIN entry as the user approaches her building will enable her
to reach her office and will log her into her desktop.

Fig. 3. Resource list on Bob’s phone.

Reactive policy creation The third
type of interface presented by the
phone to the user permits the re-
active creation of policy. This inter-
face is launched by the prover in the
user’s smartphone after the prover
has generated a list of credentials
to which the user could consent to
enable an access that is being at-
tempted by another person. For ex-
ample, in the usage scenario of Section 3, this is the interface by which Alice adds
Bob to her visitors group by selecting this option from the menu generated
by the prover (see Section 4.2).

Because this interface interrupts the user (unlike the other interfaces, which
are user driven), it is important that the user can apply access control to this step
and silence these interrupts at times she prefers to not be interrupted. For the
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former (access control), we employ the same access-control infrastructure that
we use for other resources, utilizing a default, but user-configurable, policy that
permits only those in the phone’s address book to request assistance. The latter,
i.e., silencing all such requests, is a simple toggle, and, once activated, received
requests will be silently queued for the user to handle later. The party requesting
credentials from her will be informed that a response is not forthcoming, and
will not be able to access the requested resource (or at least not with her help).
However, if she later consents to the request, the appropriate credential will still
be sent to the requester for use in the future.

4.2 Prover

As described in the example in Section 3, after arriving at Alice’s office, Bob in-
structs his phone to unlock the door. The door’s first reply contains a challenge—
a statement, in logic, of the theorem that Bob’s phone must prove before the
door will unlock. The challenge that typically needs to be proved is that the
door’s owner believes that it is OK for access to be granted. In this case, ex-
pressed in logic, the challenge is Alice says goal(A-111), i.e., Bob must prove
that Alice believes that it is OK to access her office, A-111.��

The straightforward way for Bob to answer the door’s challenge is to scour
the network for useful credentials and then attempt to form them into a proof;
most distributed authorization systems use a close facsimile of this approach.
There are some inherent problems, however, with this method of constructing
a proof. Bob might guess, for example, that Alice has credentials that he could
use, but he does not know exactly which of the credentials that she possesses
will be helpful for this particular proof. It would be inefficient for Alice to send
Bob all her credentials, since she might have hundreds. Moreover, sending all her
credentials to Bob would reveal exactly the extent of Alice’s authority, which is
unlikely to meet with Alice’s approval. Finally, there may be cases, such as in
our example, when the credential that Bob needs has not yet been created; in
these situations a simple search, no matter how thorough, would fail to yield
sufficient credentials for Bob to access Alice’s office.

An answer to these problems can be found in distributed proving—a scheme
in which Bob’s phone does not just search for individual credentials, but also
solicits help in proving simpler subproofs that he can assemble into a proof of the
challenge [7]. Using this approach, Bob’s phone might ask Alice’s phone to prove
a theorem like Bob says goal(...) → Alice says goal(...). Alice’s phone now has
the opportunity to decide which of her credentials to use or which new credentials
to create in order to prove this theorem; these credentials will be returned to
Bob’s phone along with the proof. This scheme of farming out subproofs to
other entities spans two extremes: eager proving, in which a client farms out a

�� In order to enforce the timeliness of Bob’s response and to protect against replay
attacks, the logical statement that must be proved also contains a nonce. This and
other low-level details that are not novel are described elsewhere; we omit them from
this paper in order to focus on the more abstract ideas.
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theorem only if he is completely unable to make progress on it himself; and lazy
proving, in which the client asks for help as soon as he isolates a theorem that
someone else might be able to help with. Distributed proving can be combined
with several optimizations, including caching of credentials and subproofs and
deriving proof strategies based on the shape of previously encountered proofs [7].

The use of distributed proving in Grey and the details of constructing proofs
in general are largely out of the view of the user. Bob’s phone processes the door’s
challenge until it arrives at a potentially useful subtheorem; at that point, the
phone consults the address book to determine how Alice can be reached (by
phone or by URL, for example). Since Bob might have to pay for the communi-
cation (typically, some combination of SMS and GPRS connectivity is needed,
and use of either may incur some cost) and to prevent other users from being un-
intentionally disturbed, Bob’s phone prompts Bob to approve the help request.
Alice may need reminding or convincing before she will be willing to help, and so
Bob is given the option of annotating his request for a subproof with a recorded
or text message.

Fig. 4. Alice is given the opportunity to chose
the type of credential to grant to Bob.

Upon receiving Bob’s request,
Alice’s phone first verifies that Alice
is in fact willing to help Bob (Fig-
ure 4). If Alice agrees, her phone be-
gins to compute the subproof, which
can in many cases be done with-
out further input from Alice. Some-
times, however, construction of the
subproof will require Alice to gener-
ate a new credential. In these cases, Alice is shown a list of the credentials that
can be used to complete the subproof. Alice can either choose the credential she
wishes to create, or decide that none of them are appropriate. When Alice makes
her selection, her smartphone finishes constructing the subproof and sends it to
Bob. Bob’s phone incorporates Alice’s subproof into the main proof and sends
the proof to the door.

Although a single help request is sufficient for our example with Alice and
Bob, Bob’s phone may in general need to request subproofs from several other
users; in addition, each of those users may in turn also need to solicit help.
Through a combination of optimizations derived from observing both successful
and unsuccessful past behaviors, a user’s Grey smartphone can guide proof search
to minimize the number of times help is requested. If multiple avenues can lead
to constructing a proof, the ones most likely to be successful and quick will be
the ones pursued first [7].

Figure 5 depicts the structure of the Grey application that runs on Bob’s
phone. The entire application is implemented in Java Micro Edition (J2ME),
the restricted flavor of Java that runs on many smartphones. The process of
generating proofs is managed by different components depending on whether
Bob is trying to access a resource himself (ProofTalker) or help another user
(HelpTalker). In addition to directing a Prolog engine to traverse the space of
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possible proofs, these components manage communication with the resource Bob
is trying to access and with other users via the communication framework. They
also create and manage credentials using the Crypto module.

CLDC 1.0 MIDP 2.0 JSR-135, JSR-82, JSR-120

Bouncy Castle JIProlog

Comm Framework

BluetoothL2CAP GSMS

J2ME

3rd party

...

Crypto

2D Barcode

Grey Client Midlet

ProverProofTalker HelpTalker

core

application

Fig. 5. The structure of the Grey application
that runs on smartphones.

Grey makes use of a rich set
of standard extensions to the core
J2ME APIs to enable use of Blue-
tooth and other communications
protocols (JSR-82 and JSR-120)
and the phone’s camera (JSR-135).
In addition, we use the Bouncy-
Castle libraries� � � to implement
the higher-level Grey cryptographic
primitives.

4.3 Verifier

One of the goals of Grey is to encompass many diverse resources that a user
might wish to access. Some of these resources, such as doors and computer
logins, we traditionally associate with the need for access control. Others, like
thermostats, are not normally thought of the same way. However, with the ability
to actuate such resources remotely, via the network or via a smartphone, also
comes the need to regulate access. For example, Alice may want to adjust her
office temperature before she arrives at work, but she most likely does not want
passers-by to do the same.

To enable Grey to conveniently apply to a wide range of devices, it was
necessary for its verification module—the component that mediates access to
resources—to be simple, relatively lightweight, and device independent. At the
same time, we wanted to maintain a high level of assurance that access is not
granted improperly. The proof-carrying authorization paradigm fits our needs
well; in PCA, access to a resource is allowed if the client presents a proof that
he is authorized to use it. The verification of such proofs is a straightforward
mechanical process, with none of the complexity and potential intractability of
generating proofs. This distinction is fortunate, since the verifier is in the trusted
computing base, while proof generation is not. Moreover, the verification process
itself is independent of the security policy protecting the resource, and so also
of the resource’s type (e.g., door, login).

resource
name

Challenge Proof

Challenge
Generator Liveness

Check
X.509

Validation

LF Checker Actuator
resource

name

time

Fig. 6. Flow of the verification process.

Figure 6 shows the
components and control
flow of the verification
module, which are de-
scribed in more detail in
the following paragraphs.
The process of gaining ac-
cess to a resource is initi-

� � � http://www.bouncycastle.org
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ated by a user request. In response to the request, a challenge is generated. The
challenge is the statement, in formal logic, of the theorem whose proof a poten-
tial user must provide. As described in Section 2.3, the challenge is specified in
higher-order logic; this in turn is encoded in LF, the notation of one of the most
widely used frameworks for specifying logics [19].

When Bob attempts to access Alice’s office, the verification module generates
a challenge that includes the name of the resource, A-111, and a nonce. This
challenge is sent to Bob, but also recorded for use in later stages of verification.

Bob’s eventual reply to the challenge will contain a set of credentials (e.g.,
Bob is a member of visitors), and a proof, in formal logic, that the credentials
satisfy the door’s challenge. The first step of verifying the proof is to ensure (using
the nonce) that it was created within a brief period after the door issued the
challenge. Next, the credentials, which are X.509v3 certificates with customized
extensions, are verified: their digital signatures and expiration times are checked.
Finally, the formal proof is passed to an LF type checker, which ensures that the
structure of the proof is valid (e.g., that it contains no false implications) and
that the correct theorem (the one that was issued as the challenge) was proved.
This algorithm is widely studied and well understood, providing high assurance
that an invalid proof will never be accepted [12, 4]. If this proof is successfully
verified, the LF checker signals an actuator to open the door.

Java 1.5

Bouncy Castle

Comm Framework

BluetoothL2CAP

J2SE

3rd party

...

Crypto

DoorTalker StrikeController

core

application

Checker

JSR-82 Java COMM

ChallengeGen

Fig. 7. The structure of the Java application that al-
lows office doors to be Grey-enabled.

Figure 7 shows the struc-
ture of the Grey applica-
tion that controls access
to a door. Similarly to
the prover application de-
scribed in Section 4.3, this
application is constructed
in a modular fashion—the
only customization neces-
sary was the front end
(DoorTalker) that encapsu-
lates these modules and the
actuator module (Strike-
Controller) that sends commands specific to the relay controller we use.

The required physical infrastructure for Grey-enabling a door is relatively
minimal: a standard electric door strike actuated by an embedded PC located in
the wall near each door. Our prototype embedded PC measures 4.55×3.75×1.70
inches—small enough to fit within each door, an option we seriously considered.
It is equipped with a Bluetooth adapter and an RS-485 relay controller, and
to improve reliability has no moving parts (i.e., cooling is passive, and flash
memory is used for non-volatile storage). The prototype embedded PC uses a
commodity Pentium M on a PC-104+ mainboard; for a wide deployment of Grey
a significantly more compact, custom embedded system could be designed.

Enabling a door with Grey does not preclude legacy access technologies (e.g.,
keys, proximity cards) from being used; Grey merely provides a parallel way
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to unlock the door. Of course, Grey can also be used as the sole method of
controlling access.

4.4 Performance on Smartphones

In this section we provide performance measurements for certain tasks in Grey.
Our primary interest is measuring delays as experienced by the user to access
a resource in the common case. We report such numbers here, and additionally
measure costs associated with underlying operations to shed light on the sources
of these delays.

Our first macrobenchmark is the time required to open a door. The com-
puter controlling the door lock was an embedded PC with a 1.4GHz Pentium
M processor; more detail on this pilot application is given in our companion
technical report [6]. Each timing was measured starting when the user selected
the door from the resource list on her phone (a Nokia 6620), and ended when
the door unlocked. On average, this delay was 5.36 seconds excluding any user
interaction (more on this below), with an variance of 0.33 due to background
work on the phone. The second macrobenchmark is the time required for a user
to log into a 2GHz Windows XP workstation using Grey [6]. The methodology
in this experiment was similar to that for the door. This delay averaged to 9.31
seconds, with a variance of 2.20. The bulk of the extra time was taken up by the
load time for explorer.exe and desktop preparation.

We emphasize that these are common-case numbers in three senses. First,
neither of these tests involved a remote help request. Help requests can take
significantly longer (e.g., a minute), and vary depending on cellular network
conditions and user responsiveness. Second, these measurements did not involve
the use of a capture-resilient signing key on the phone, and as such the signing
operation by the phone did not involve user input (i.e., a PIN) or interaction with
a capture-protection server. In our present implementation, we have adopted a
design by which the user can configure the frequency with which she is prompted
for her PIN (and the capture-protection server is contacted), rather than being
prompted per resource access. Her capture-resilient key is then used at these in-
tervals to create a short-lived certificate for a non-capture-resilient public key (a
step which does require PIN entry) that is used to sign access requests. As such,
the common case incurs only the latency of a signature with this non-capture-
resilient key. Third, the network address for each of the computers regulating
access was already stored in the resource list of the phone and so, e.g., the one-
time barcode-processing overhead incurred if it is first captured via the camera
(roughly 1.5 sec.) is not reflected in these numbers.

Typical latencies of under six seconds to open a door and roughly nine sec-
onds to complete a computer login are already comparable to the latencies of
more traditional access control (e.g., physical keys and passwords). However, we
emphasize that Grey permits these latencies to be hidden from the user more ef-
fectively than alternatives. Our current systems utilize class 2 Bluetooth devices,
meaning that, e.g., a smartphone could initiate an access once it is within 10
meters of the resource (the door or computer). By the time the user reaches the
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resource in order to make use of it, the access typically would have completed.
In our own experience with using the system, access is consequently far quicker
than with the alternatives that Grey replaces for us.

5 Conclusion and Status

Smartphones offer a number of features that make them attractive as a basis
for pervasive-computing applications, not the least of which is their impending
ubiquity. Grey is an effort to leverage these devices beyond the games, personal
information management, and basic communication (voice, email) for which they
are primarily used today. We believe, in particular, that these devices can form
the basis of a sound access-control infrastructure offering both usability and
unparalleled flexibility in policy creation.

Grey is a collection of software extensions to commodity mobile phones that
forms the basis for such an infrastructure. At the core of Grey is the novel
integration of several new advances in areas ranging from device technologies
(e.g., cameras) and applications thereof, to theorem proving in the context of
access-control logics. This integration yields, we believe, a compelling and usable
tool for performing device-enabled access control to both physical and virtual
resources.

Grey is being deployed to control access to the physical space on two floors
of a building recently constructed on our university campus. Construction of
this building was completed in June 2005, and Grey is being phased into the
building on an opt-in basis. This deployment will serve as a platform for con-
tinued research on usability, credential management, theorem proving and other
technologies in the function of access control.
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