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Abstract. Recent research demonstrates that adversaries can inject ma-
licious code into a peripheral’s firmware during a firmware update, which
can result in password leakage or even compromise of the whole host op-
erating system. Therefore, it is desirable for a host system to be able to
verify the firmware integrity of attached peripherals. Several software-
based attestation techniques on embedded devices have been proposed
as potentially enabling firmware verification. In this work, we propose
a Software-Based Attestation technique for Peripherals that verifies the
firmware integrity of a peripheral and detects malicious changes with
a high probability, even in the face of recently proposed attacks. We
implement and evaluate SBAP in an Apple Aluminum Keyboard and
study the extent to which our scheme enhances the security properties
of peripherals.

1 Introduction

Recent research shows that adversaries can subvert keyboards by injecting ma-
licious code into a keyboard’s firmware during firmware update [1]. The in-
jected code can compromise users’ privacy and safety, such as eavesdropping a
user’s bank account password or credit card number, or embedding a kernel-level
rootkit into a clean re-installed operating system through some software vulner-
abilities in the host operating system. Similar attacks can happen on other pe-
ripherals, such as a mice or a game controller. Peripheral manufacturers enable
updating of firmware to fix firmware bugs. However, due to constrained compu-
tation and memory resources, the low-speed embedded microcontroller on many
peripherals cannot verify complex cryptographic signatures or message authenti-
cation codes. Consequently adversaries can inject malicious code into peripheral
firmware during a firmware update. Therefore, a legacy computer is potentially

⋆ This research was supported in part by CyLab at Carnegie Mellon under grants
DAAD19-02-1-0389 from the Army Research Office, and by grant NGIT2009100109
from the Northrop Grumman Information Technology Inc Cybersecurity Consor-
tium. The views and conclusions contained here are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements,
either express or implied, of ARO, CMU, CyLab, NGC, or the U.S. Government or
any of its agencies.



under serious attacks due to vulnerabilities on widely used peripherals. We take
the position that it is desirable for a host machine to verify the firmware integrity
on peripherals.

Software-based attestation schemes on embedded systems [2–4] have been
proposed as potentially enabling firmware verification, which enables an exter-
nal trusted verifier to verify the firmware integrity on peripherals. However,
recent research [5] suggests that it may be feasible to hide the malicious code
from an attestation through a return-oriented attack or a compression attack.
In addition, constrained computation and memory resources in the low-speed
peripherals limit the implementation of the software-based solutions. For exam-
ple, some software-based attestation schemes [2] require hardware multiplication
units or a large amount of data memory that is not available on all peripher-
als, especially on low speed peripherals such as mice or keyboards. Therefore,
peripheral firmware integrity verification remains an important challenge.

In this paper, we propose Software-Based Attestation for Peripherals (SBAP)
to verify peripherals’ firmware integrity. Similar to previous proposals, SBAP is
based on a challenge-response protocol between a trusted verifier and an un-
trusted peripheral, and a predicted computation time constraint. It verifies the
contents of both program and data memory on the peripheral and can detect any
malicious changes with arbitrarily high probability, even in the face of recently-
proposed attacks. In this paper, we make the following contributions:

1. We propose a software-only solution to verify the firmware integrity of pe-
ripherals, that can be implemented via a software upgrade to the peripherals
and avoid a costly hardware upgrade.

2. We propose an approach to verify the code or data integrity on both program
memory and data memory in peripherals that can prevent all known attacks.

3. We design, implement, and evaluate a prototype of SBAP using an Apple
Aluminum Keyboard.

We organize the remainder of this paper as follows. In Section 2, we pro-
vide the background on software-based attestation and related attacks. Section 3
presents the problem definition, assumptions, and the attacker model. In Section
4, we describe the system design including the system architecture, attestation
protocol and verification function design. Section 5 details our SBAP implemen-
tation on an Apple Aluminum Keyboard and Section 6 gives our experimental
results. We discuss our work in Section 7 and describe related work in Section
8. Finally, we offer our conclusions and identify future work in Section 9.

2 Background

2.1 Software-based Attestation for Embedded Devices

SWATT. SoftWare-based ATTestation for embedded devices (SWATT) is based
on a challenge-response protocol between a trusted verifier and an untrusted em-
bedded device, and a predicted computation time constraint. First, the verifier



sends a random nonce to the embedded device. Using this nonce as a seed, a ver-
ification function in the embedded device computes a checksum over the entire
memory contents and returns the checksum result to the verifier. The verifier has
a copy of the expected memory contents of the embedded device, so it can verify
the checksum result. Also, the verifier knows the exact hardware configuration
of this untrusted embedded device, enabling the verifier to exactly predict the
checksum computation time. Because the checksum function is well optimized,
the presence of any malicious code in memory will either invalidate the check-
sum result or introduce a detectable time delay. Therefore, only the checksum
result received within the expected time range is valid. During checksum com-
putation, the checksum function reads memory in a pseudo-random traversal,
thus preventing an attacker from precomputing the checksum result. SWATT re-
quires that the embedded device can only communicate with the verifier during
attestation. This prevents a malicious device from communicating with a faster
machine to compute the checksum.

ICE. Indisputable Code Execution (ICE) sets up a dynamic root of trust in
the untrusted device through a challenge-response protocol between a trusted
verifier and an untrusted embedded device, and a predicted computation time
constraint. The dynamic root of trust also sets up an untampered execution en-
vironment, which in turn is used to demonstrate verifiable code execution to the
verifier. As in SWATT, the verifier first sends a random nonce to the untrusted
device. Upon receiving the random nonce, the verification function in the un-
trusted device sets up an untampered execution environment. The verification
function includes code to set up an ICE environment by disabling interrupts,
a checksum function that computes a checksum over the contents of the verifi-
cation function, a communication function (send function) that returns compu-
tation results to the verifier, and a hash function that computes a hash of the
executable that will be invoked in the untampered environment. After checksum
computation, the send function sends the checksum result to the verifier. As in
SWATT, the verifier can verify the checksum result and predict the checksum
computation duration. If the verifier receives the correct checksum within the
expected time, the verifier obtains assurance that the untampered execution en-
vironment (dynamic root of trust) has been set up in the untrusted device. The
send function invokes the hash function to compute a hash of the executable in
the embedded device and sends the hash result to the verifier. Then the verifica-
tion function invokes the executable on the untrusted device. Simultaneously, the
verifier obtains the guarantee of the integrity of the executable through verifying
the hash of the executable.

Discussion. Both ICE and SWATT implement code integrity verification through
a software-only approach. However, there are several challenges to implement
ICE on embedded devices. In ICE, CPU registers describing code location (e.g.,
the program counter) and interrupt status information are included in the check-
sum to confirm the intended code location and interrupt status. However, not
all microcontrollers provide instructions to directly access the values of the PC



or interrupt status registers. For instance, on the CY7C63923 microcontroller [6]
in the Apple Aluminum Keyboard, there is no instruction to read the value of
the PC, although the CY7C63923 does provide instructions to access the Flag
register containing interrupt status information. Moreover, the code size of ver-
ification function in ICE is larger than the code size of the checksum routine
in SWATT. On some embedded devices, there are very constrained memory re-
sources for the implementation of the verification function. For example, on an
Apple Aluminum Keyboard, the size of Flash memory is only 8 KB and there is
only about 1 KB of free Flash memory for the implementation of our verification
function.

2.2 Attacks on Existing Proposals

Memory Copy and Memory Substitution Attack. In a memory copy attack, the
attacker modifies the checksum code in program memory while keeping a correct
copy of the original code in unused memory. In a memory substitution attack,
the attacker keeps the correct code in the original memory location, but deploys
the malicious code in unused memory. In both attacks, the malicious code com-
putes the checksum when expected. To obtain the correct checksum result, the
malicious code redirects the location of the memory read operation to the correct
code. On common embedded devices, the values in empty program memory are
constant (i.e., 0xFF, which is the uninitialized value of Flash memory). Thus, the
malicious code can predict such constant values and use them during checksum
computation. SWATT and ICE prevent a memory copy or memory substitution
attack by reading the program memory in a pseudo-random fashion so that the
malicious code cannot predict the memory address to read, and has to add ad-
ditional instructions to check and redirect the memory address. Such operations
result in a detectable time overhead. On a Harvard architecture embedded de-
vice, the read latency of data memory is much smaller than the read latency
of program memory. Thus, the malicious code can minimize the computation
overhead of a memory copy attack by having a copy of the original code in data
memory and redirecting the location of checksum memory read operations to
data memory instead of program memory.

Compression Attack. One important enabler of a memory copy or memory sub-
stitution attack is that the malicious code can remember or predict the constant
values of empty memory during attestation. Therefore, Seshadri et al. [2] pro-
pose to fill the empty space of program memory with pseudo-random values and
leave no available free space for attackers to make a memory copy or memory
substitution attack. However, an attacker can still create free space through com-
pressing the existing code on program memory. Some compression algorithms,
such as the Canonical Huffman Encoding [7], can decompress the compressed
stream from an arbitrary position. Thus, the malicious code can decompress the
compressed steam on-the-fly during attestation and obtain the correct checksum
result though the checksum code reads memory in a pseudo random traversal.



The decompression procedure causes a detectable computation overhead because
of the complexity of the decompression algorithm.

Return Oriented Programming Attack. Return oriented programming (ROP) [8–
10] performs computation on a system by executing several pieces of code that
are terminated by a return instruction. These pieces of code are executed through
well-controlled stack content. If there is sufficient existing binary code in the sys-
tem, an adversary can execute arbitrary computations through a ROP attack
without injecting any code, except for overwriting the stack with well-designed
content. Castelluccia et al. [5] present that an adversary can use a ROP attack
to protect malicious code from being detected by software-based attestation
schemes. Briefly, the adversary code first saves a copy of the adversary code on
data memory before attestation. Then the adversary code modifies the contents
of data memory by embedding ROPs on the stack. Through these ROPs, the
attacker erases all the malicious code in program memory and restores the orig-
inal code before checksum computation. Then, during checksum computation,
the contents of program memory are exactly as expected. After attestation, the
attacker restores malicious code in program memory through an additional ROP.
The ROP attack generates little computation overhead. For example, in the at-
tack described by Castelluccia et al. [5], the computation overhead caused by a
ROP attack is undetectable, only 0.3% of the expected checksum computation
time.

Attack Analysis. As described above, an attacker can hide malicious code from
an attestation through a compression attack or a ROP attack. However, both
attacks modify the contents of data memory, by storing either malicious code
or ROP data. Thus, a checksum function can detect such malicious changes by
verifying the contents of both program memory and data memory. However,
it is challenging to verify the contents of data memory, since the content is
unpredictable to the verifier. To verify it, the verifier must be able to reset data
memory into a known or predictable state before attestation. The verification
function can reset data memory into a known state by erasing the contents of
data memory. To prevent attacker from predicting or compressing the contents
of data memory, the data memory should be filled with pseudo-random values
before attestation.

3 Problem Definition, Assumptions and Attack Mode

Problem Definition. We consider the problem of how a host machine can verify
the firmware integrity of a peripheral attached to it without any dedicated hard-
ware, i.e., using a software-only approach that can detect arbitrary malicious
changes.

Assumptions. We assume that the verifier knows the exact hardware configura-
tion of the peripheral, such as the CPU model, the CPU clock speed, the size of



program memory, and the size of data memory. We also assume that the verifier
has a copy of the expected contents of the program memory of the peripheral. We
assume that the communication channel between the peripheral and the verifier
can provide message-origin authentication. We also assume that the peripheral
can only communicate with the verifier during the attestation, which prevents
the peripheral from communicating with a faster machine to compute the check-
sum (this attack is called a proxy attack). This can be implemented through a
physical connection, such as USB cable.

Attacker Model. We assume that an attacker cannot change the hardware config-
uration of peripherals, such as speeding up the CPU clock, or adding additional
program memory or data memory. However, the attacker can make arbitrary
changes to the peripheral software. We assume that there are software vulner-
abilities in the peripheral firmware, through which an attacker can attempt a
compression or ROP attack.

4 SBAP: Software-Based Attestation for Peripherals

4.1 System Overview

Similar to previous proposals [2, 3], SBAP verifies the firmware integrity of a
peripheral through a challenge-response protocol and a predicted computation
time constraint. To prevent known attacks, SBAP leaves no available empty
space in memory for attackers by filling all unused space in program and data
memory with pseudo-random values, and verifying the integrity of both program
and data memory. Also, different from SWATT and ICE, SBAP utilizes an effi-
cient pseudo-random number generator, which is mainly designed for low-speed
devices with constrained computation and memory resources. Figure 1 depicts
an overview of the system setup as well as the protocol steps. On the peripheral,
the verification function is responsible for disabling all interrupts in the micro-
controller, filling the data memory with pseudo-random values, computing the
checksum over the entire contents of data memory and program memory, and
sending the final checksum result to the verifier. Before peripheral deployment,
available free space in program memory must be filled with pseudo-random val-
ues. On the verifier, a nonce generator generates random nonces to seed the
untrusted peripheral and a timer measures the verification time. A checksum
simulator on the verifier computes the expected checksum result by simulating
the checksum procedure.

4.2 Protocol

To verify the firmware integrity on a peripheral, SBAP performs the following
steps:

1. The verifier sends the attestation request to the untrusted peripheral. An
8-byte random nonce is included in this request as a seed to the verification
function.
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Fig. 1. System Overview and Protocol

2. Upon receiving the attestation request, the verification function first dis-
ables all interrupts on the peripheral to set up an untampered execution
environment.

3. The verification function fills the entire data memory with pseudo-random
values generated using the nonce as a seed.

4. The verification function computes a checksum over the entire contents of
both program memory and data memory. Our checksum function uses part
of data memory to store variables. The values of these variables are pre-
dictable to the verifier though they change dynamically during checksum
computation.

5. The verification function sends the checksum result to the verifier.

6. The verifier verifies the checksum result as well as the computation time.
If the verifier receives the expected checksum result within predicted time,
the verifier trusts the attached peripheral. Otherwise, the verifier rejects the
attached peripheral. At the same time, the peripheral is reset so that the
pseudo-random values in data memory are cleaned, and the registers of the
peripheral are restored to their default states.

After the attestation, since data memory is filled with pseudo-random values,
the peripheral should be reset before being used. Additionally, during the reset,
some of the registers should be restored to their default states. Otherwise, an
attacker may get a chance to hide malicious data in the register space for future
attacks. An attacker may store the malicious data in some IO data or control
registers that are never used by the peripheral. For example, on a CY7C63923
microcontroller, there are 17 bytes of IO data registers that an attacker can use
to hide malicious data for future attacks. In general, a power on reset is always
enabled on a peripheral, during which all the registers are restored to their
default values. A software-based reset function is also a solution if the function
can prevent an attacker from hiding any malicious data in register space.



4.3 Verification Function

Due to the constrained computation and memory resources in the simple micro-
controllers that are deployed on low-speed peripherals, the verification functions
that are used in previous proposals cannot be deployed directly in SBAP. In this
section, we detail the verification design in SBAP by describing the pseudo-
random number generator, our design for filling data memory with pseudo-
random values, and our checksum function.

Pseudo-Random Number Generator (PRNG). In the verification function, the
PRNG is used for two purposes:

1. output PRNs to fill the data memory;
2. output PRNs to construct memory address to read in a pseudo-random

fashion.

In previous proposals [2], T-functions [11] or RC4 [12] are used to output PRNs.
However, on low speed peripherals, it is challenging to implement the same
PRNGs efficiently due to constrained computation or memory resources. T-
functions need a multiplication unit to generate PRNs efficiently. However, a
hardware multiplication unit is not available in many low-speed microcontrollers
that are used in peripherals. Software-based multiplication is too slow to be a
viable option. For instance, on a CY7C63923 microcontroller [6], a software-
based multiplication requires thousands of cycles to complete a 16-bit multipli-
cation. An RC4-based PRNG outputs pseudo-random numbers through simple
arithmetic and logical operations. However, RC4 requires at least 256 bytes of
RAM, which consumes all memory resource on some microcontrollers (such as
the CY7C63923). Laszlo et al. [13] propose several efficient PRNGs that are
primarily designed for low speed embedded devices. The PRNGs proposed by
Laszlo et al. only require simple addition, XOR, or shift operations and few
memory resources to output PRNs efficiently. From the PRNGs that Laszlo et
al. propose, we select a 2-stage PRNG in our SBAP design. Other PRNGs that
have the same features are also potential choices for SBAP. The PRNG we select
outputs PRNs as follows:

x[i+ 1] = x[i− 1] + (x[i]⊕ rot(x[i− 1], 1)) (1)

⊕ is the logical XOR operation and rot is the left rotation shift operation. x is
the output of this PRNG, a 32-bit long stage. The value of one stage is updated
based on the values of the previous two stages in each iteration.

Filling Data Memory With Pseudo-Random Values. The verification function
fills data memory in a pseudo-random fashion. Such a design is required to
prevent an attacker from reserving one small block at the end of data memory
to store malicious data, and then generating the PRNs that are expected to
be in that small block of data memory on-the-fly when they are needed by the
checksum routine. In our design, the verification function determines the data



memory addresses to be filled based on the outputs of the PRNG. Each address
is then filled using the XOR of two bytes of PRNG output. This prevents the
attacker from generating the PRNs that are expected in data memory based
on the values of existing PRNs in other locations in data memory, since only
XOR results are stored in data memory. To make sure that all data memory
is filled, the verifier can obtain the number of loop iterations upon which all
data memory has been filled. This value is determined by simulating the filling
procedure before sending the attestation request.

Checksum Function Design. The checksum function computes a fingerprint over
the entire contents of both program memory and data memory. As in SWATT or
ICE, the checksum is computed through a strongly ordered sequence of addition,
XOR, and rotation shift operations. If the sequence of the operations is altered
or some operations are removed, the checksum result will be different with a
high probability. Also, the checksum function reads memory in a pseudo-random
traversal. If the memory size isN bytes, each memory location is accessed at least
once after O(NlnN) memory read with a high probability [2]. The input to the
checksum function is a 16-byte pseudo-random value, which is used to seed the
PRNG (i.e., to provide stages x[0] and x[1]) and to initialize an 8-byte checksum
vector. The output of the checksum function is also an 8-byte checksum vector.
Each byte of the checksum vector is called a checksum state. For each iteration
of the checksum function, the value of one checksum state is updated based on
the current memory contents, the pseudo-random value, and the values of other
checksum states. In order to preserve the entropy of the carry bit, we add the
carry bit to each checksum state. Following is the pseudo code of one iteration
of the checksum function:

/* C is the checksum vector, i is its current index. */

/* PRN is the pseudo-random number */

/* addr is the memory address */

addr = PRN & MASK /* Construct memory address */

/* update one checksum state */

C[i] = C[i] + ( Mem[addr] xor C[(i-2) mod 8] )

tmp = C[i] mod 256

C[i] = rotation_left_shift(tmp, 1) + ( C[i] >> 8 )

C[i] = C[i] + i

i = (i + 1) mod 8 /* update the index i */

To optimize the computation time of the checksum, we unroll the checksum loop
eight times and each time one checksum state is updated by either the contents
of program memory or the contents of data memory, which can be adjusted
based on the memory size proportion of each. For example, on a peripheral that
has 8 KB of programmable Flash and 256-bytes of RAM, seven checksum states
can be updated based on the contents of Flash memory while one checksum
state can be updated based on the contents of RAM. To make the computation



of each checksum state different, we also add the index value to the checksum
state.

5 Implementation

In this section, we detail the implementation of SBAP on a wired Apple Alu-
minum Keyboard.

5.1 The Apple Aluminum Keyboard

The Apple Aluminum Keyboard connects to a computer via a USB interface.
Inside the Apple Aluminum keyboard, a Cypress CY7C63923 microcontroller
controls the keyboard matrix. During a firmware update, the firmware on the
CY7C63923 microcontroller is updated. The Cypress CY7C63923 microcon-
troller belongs to the Cypress enCoReTM II family and is primarily designed
for low-speed USB peripheral controllers, such as mice, keyboards, joysticks,
game pads, barcode scanners, and remote controllers. The Cypress CY7C63923
is a Harvard Architecture, 8-bit programmable microcontroller with 256 bytes
of RAM and 8 KB of Flash. Five registers on this microcontroller control the
operations of its CPU. These five registers are the Flag register (F), Program
Counter (PC), Accumulator Register (A), Stack Pointer (SP), and Index Regis-
ter (X). PC is 16-bits in length, while all the other registers are 8-bits long. A
and I are used during arithmetic or logical operations on this microcontroller.

5.2 Verification Function

Following a keyboard firmware update, the Flash memory from 0xe00 to 0x1300
(1280 bytes) is available free space, where we implement our verification function.
Figure 2 shows the final memory layout of keyboard Flash memory. The veri-
fication function is located at addresses 0x0e00 – 0x1268 in the Flash memory.
The Flash memory from 0x1268 to 0x1300 is filled with pseudo-random values.
In the verification function, a ’Send Function’ is the communication module that
handles the attestation request from the verifier and returns checksum results
through the USB channel to the verifier following checksum computation. Before
the attestation, the contents of RAM is unpredictable to the verifier. Therefore,
an ’Initial Function’ sets the contents of data memory to a known state by filling
the data memory with pseudo-random values (we fill data memory in a linear
sequence instead of in a pseudo-random fashion as designed). The data memory
from 0x18 to 0xff is filled with with pseudo-random values, while the data mem-
ory from 0x00 to 0x17 is used to store variables for the verification function.
Also, the ’Initial Function’ disables all interrupts on the CY7C63923 microcon-
troller, which prevents the contents of data memory from being modified by an
interrupt call during checksum computation. A ’Checksum Function’ is imple-
mented, which computes a checksum over the entire contents of both program
memory (Flash) and data memory (RAM). After attestation, we reset the Apple



Aluminum Keyboard. A two-stage pseudo-random number generator (PRNG) is
implemented in both the ’Initial Function’ and ’Checksum Function’. The 8-byte
nonce sent by the verifier is used to seed the PRNG in the ’Initial Function’.
After filling RAM, the PRNG in ’Initial Function’ outputs a 16-byte random
number to serve as input to the ’Checksum Function’, which is used to seed
the PRNG in ’Checksum Function’ and to initialize the 8-byte checksum vector.
All of these functions are implemented in assembly. The two-stage PRNG is im-
plemented using 23 assembly instructions. It outputs 4 bytes of pseudo-random
values every 157 CPU cycles on the Apple Aluminum Keyboard. We unroll the
checksum iteration eight times. Each time one checksum state is updated. The
first seven checksum states are updated based on the content of Flash memory
while the last checksum state is updated based on the content of RAM. Including
the two-stage PRNG, ’Checksum Function’ only requires 19.5 instructions and
133.5 CPU cycles on the average to update one checksum state on the Apple
Aluminum Keyboard. Following is the assembly we implement to update one
checksum state:

; [0x00] to [0x07] saves outputs of PRNG

; [0x08] to [0x0f] saves temp variables, such as counter

; [0x10] to [0x17] saves checksum states

; ROMX is the instruction to read flash memory

; CPU loads memory address from register A

; and register X when ROMX is executed

; the result of ROMX is saved in register A automatically by CPU

; Update checksum[0]

MOV X, [0x00] ; read pseudo-random values

MOV A, [0X01] ; to register X and A

AND A,0X1F ; construct memory address

ROMX ; read Flash memory, result is saved in A

XOR A, [0x16] ; Mem[addr] xor checksum[6]

ADD [0x10], A ; add previous checksum value

RLC [0x10] ; left rotation shift 1 bit, add carry bit

ADC [0x10],0x00 ; add carry bit (add index too)

6 Experimental Results

Verification Time. Figure 3 shows the verification time for 40 trials. In each
trial, the verifier measures the entire verification time between sending a nonce
to the Apple Aluminum Keyboard and receiving the checksum result from the
keyboard. The average verification time of the 40 trials is 1706.77 ms while the
standard deviation is only 0.18 ms.

USB Communication Overhead. In this experiment, the verifier first sends an
attestation request to the Apple Aluminum Keyboard. Upon receiving a request
from the verifier, the verification function on the Apple Aluminum Keyboard
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returns an 8-byte value to the verifier immediately without computing the check-
sum. To obtain accurate experimental results, the verifier measures the entire
time of 1000 runs of the communication in each trial. Figure 4 shows the av-
erage communication time of the 1000 runs in each trial. The average value of
the USB communication overhead for all the experiments is 1.83 ms and the
standard deviation is only 0.01 ms.

Fig. 4. USB Communication Overhead

Analysis. The experimental results show that the verification procedure is very
stable. As shown in Figure 3, the verification time for all 40 trials varies from
about 1706 ms to about 1708 ms. An attacker cannot hide malicious code from
an attestation unless the malicious code computes the correct checksum result
with a computation overhead less than 3 ms, which is only about 0.2 percent
of the verification time. This kind of attack is extremely challenging for the
attacker since there is not any free space left in program or data memory. Also,
the experimental results show that the communication overhead does not affect
the detection of the computation overhead caused by malicious code, since the
communication is also very efficient and stable. Another important result we
obtain from the system evaluation is that SBAP is an efficient and realistic
solution to solve the peripheral integrity verification problem. In our prototype,
a verifier (a user) only needs to wait about 2 seconds for the entire verification
procedure, which is acceptable if run in response to being connected to a host.

7 Discussion

To the best of our knowledge, there is no efficient attack against SBAP. One
possible attack is that an attacker performs a compression attack or ROP at-
tack and stores the malicious data or code in data memory, then generates the
pseudo-random values that should be filled in data memory on-the-fly during



the checksum computation. However, this attack causes large computational
overhead due to the complexity of the PRNG. Another attack is that an at-
tacker performs a memory copy attack by having a copy of the original code or
pseudo-random values that should be in data memory in the register space of
the microcontroller. This attack can be detected by the verifier since a memory
copy attack causes a detectable computation overhead. In fact, there is very low
likelihood that an attacker can perform this attack because there is not much
register space available for an attacker to perform a memory copy attack on a
peripheral. For example, we find that on a CY7C36923 microcontroller there are
about 30 registers (30 bytes) that can be used for a memory copy attack by an
attacker. However, once the attacker changes the checksum loop, the attacker
needs hundreds of bytes memory to store the original copy of the checksum
function. Finally, an attacker can hide some malicious data that can be used for
future attacks in the register space of a peripheral. SBAP prevents this attack
by resetting the peripheral after an attestation.

8 Related Work

Several software based attestation technologies on embedded devices have been
proposed. Seshadri et al. propose SWATT [2], ICE, SCUBA [3], and SAKE [4],
as discussed in Section 2. However, as discussed in this paper, it is challenging to
implement ICE in resource-constrained embedded devices. To prevent adversary
from hiding malicious code in the empty memory, Yang et al. suggest filling
the available empty space with pseudo-random values [14]. Castelluccia et al.
discuss the difficulties of software-based attestation on embedded devices [5].
While they mention many important points, we pointed out several errors and
inaccuracies [15].

9 Conclusions and Future Work

We propose SBAP, a software-only solution to verify the firmware integrity of
peripherals. SBAP verifies the contents of both program memory and data mem-
ory in a peripheral and detects malicious changes with high probability in the
face of recently proposed attacks (e.g., a memory copy or memory substitution,
a compression attack, and a ROP attack). We implement and evaluate SBAP
on an Apple Aluminum Keyboard. One area of future work is to implement and
evaluate SBAP on other peripherals, especially high-speed peripherals such as a
network interface. The hardware architecture and configuration of a high-speed
peripheral is different from those of a low speed peripheral. Therefore, there will
likely be new challenges when we evaluate SBAP on a high-speed peripheral.
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