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Abstract

We explore the extent to which newly available CPU-based secu-

rity technology can reduce the Trusted Computing Base (TCB) for
security-sensitive applications. We find that although this new tech-
nology represents a step in the right direction, significant perfor-

mance issues remain. We offer several suggestions that leverag

existing processor technology, retain security, and improve perfor-
mance. Implementing these recommendations will finally allow ap-
plication developers to focus exclusively on the security of their own
code, enabling it to execute in isolation from the numerous vulnera-
bilities in the underlying layers of legacy code.

Categories and Subject Descriptors.4 [Performance of Systeins
D.2.11 [Software Architecturds K.6.5 [Security and Protectidn

General Terms Measurement, Design, Security

Keywords Trusted Computing, Late Launch, Secure Execution

1. Introduction

On a modern computing device, the minimal TCB for executing
a piece of code consists of the CPU, the memory, and the interface
between them. The challenge then is to develop an architecture that
executes application code while relying only on this mandatory TCB,
yet simultaneously maintains compatibility with the existing layered

Systems architecture.

In earlier work [16, 17], we proposed a Secure Execution Archi-
tecture (SEA) that executes the security-sensitive code of an appli-
cation while trusting only the mandatory TCB and a Trusted Platform
Module (TPM). SEA achieves this property by executing an applica-
tion’s security-sensitive code in isolation from all other software on
the system. The isolation is achieved using the CPU-based isolation
technologies present in modern commodity CPUs from AMD and
Intel, namely AMD’s Secure Virtual Machine (SVM) technology [1]
and Intel’'s Trusted Execution Technology (TXT) [11].

In this paper, we evaluate the performance of SEA on commodity
systems. Unfortunately, SVM and TXT were designed for extremely
infrequent usage, say once per boot cycle. As a result, we find that th
SEA approach on current hardware suffers from performamstes

The architecture of today’s computer systems is layered, with appli- that undermine its appeal. Fortunately, our investigation also reveals
cations forming the highest layer and the hardware forming the low- that by combining alterations to SEA with hardware modifications
est. With the layered architecture, each application’s Trusted Com- to improve performance and concurrency, we can achieve efficient
puting Base (TCB), and hence security, depends on many layers ofminimal TCB code execution. In other words, we can execute appli-
code, including the system firmware (BIOS), the firmware of vari- cation code while trusting only the mandatory TCB and avoid today’s
ous peripheral devices, the bootloader, the OS kernel, and the appliferformance issues.

cation’s own code. With the trend towards increasingly feature-rich ~ Although other researchers have proposed compelling hardware
and complex systems, the code size and complexity of each layer hasecurity architectures, e.g., XOM [14] or AEGIS [23], we focus on
grown tremendously. For example, today's OSes consist of severalhardware modifications that tweak or slightly extend existing hard-
million lines of code and support a wide variety of hardware plat- ware functionality. We believe this approach offers the best chance
forms. With the explosion in size and complexity of an application’s Of seeing hardware-supported security deployed in the real world.

TCB, securing applications has become a daunting task. Through a series of experiments on existing commodity hardware,
we show that our recommendations promise significant performance

improvements.
In summary, this paper makes the following contributions:

¢ We specify the hardware requirements for executing application
code with a minimal mandatory TCB.

e Using our own implementation of primitives for minimal TCB
code execution, we show that current hardware renders it imprac-
tical, e.g., paralyzing the processor for a full second to set up a
trusted execution session.

e We recommend modifications of commodity hardware to se-
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curely improve the performance and concurrency of SEA. In our
recommendations, we seek to minimize the changes required,
thereby increasing the likelihood of their adoption.

1We present a list of acronyms in the appendix.



2. Background Execution Technology (TXT) [10], formerly LaGrande Technology
(LT). Both AMD and Intel are shipping processors with these capa-
bilities; they can be purchased in commodity computers.

2.1 Trusted Platform Modules (TPMs) The key new feature offered by tt&KINIT instruction on AMD

: : : . SENTERon Intel) is the ability tdate launcha Virtual Machine
The TPM is a chip designed by the Trusted Computing Group to (or . . . X : ;
- Monitor (VMM) or Security Kernel at an arbitrary time with built-
strengthen platforms against software attack [25]. in protection against software-based attacks. At a high-level, the

2.1.1 TPM-Based Attestation CPU's state is reset and memory protections for a region of code are
enabled. The CPU measures the code in the memory region, extends
the measurement into a PCR of the TPM, and begins executing the
code. Essentially, a late launch provides many of the security benefits
of rebooting the computer (e.g., starting from a clean-slate), while
bypassing the overhead of a full reboot (i.e., devices remain ethable
the BIOS and bootloader are not invoked, etc.).

We now describe AMD'’s implementation of late launch, followed
by Intel’s differences in terminology and technique.

We provide information on the hardware technologies we explore.

A computing platform containing a Trusted Platform Module (TPM)
can provide amttestatioror quote—essentially a digital signature on
the current platform state—to an external entity. The platform state
is detailed in a log of software events, such as applications started
or configuration files used. Each event is reducedtteasurement
m, using a cryptographic hash functiol, The hash value is stored
in one of the TPM’s Platform Configuration Registers (PCRs) by
cryptographicallyextendinga particular PCR'’s current valuey, i.e.,
the PCR’s value is updated as,1 — H(v:||m), where|| denotes ) ,
concatenation. By using this construction of a PCR register and a2-2-1 AMD Secure Virtual Machine (SVM)
cryptographic hash function, a single PCR value records all values To “late launch” a VMM with AMD SVM, software in CPU pro-
extended into it and the order in which those extensions occurred.tection ring 0 (e.g., kernel-level code) invokes BKINIT instruc-
The TPM can sign the values of the PCRs, effectively signing the tion, which takes a physical memory address as its only argument.
entire event log. AMD refers to the memory at this address as the Secure Loader Block
To sign its PCR values, the TPM uses the private portion of an (SLB). The first two words (16-bit values) of the SLB are defined to
Attestation Identity Key (AIK) pair. The AIK pair is generated by be its length and entry point (both must be between 0 and 64 KB).
the TPM, and the private AIK never leaves the TPM in cleartext. A To protect the SLB launch against software attacks, the proces-
certificate from a Privacy Certificate Authority (CA) attests that the sor includes a number of hardware protections. When the proces-
AlK corresponds to an AIK generated by a legitimate TPM. sor receives aSKINIT instruction, it disables direct memory access
Attestation allows an external party (werifier) to make a trust (DMA) to the physical memory pages composing the SLB by setting
decision based on the platform’s software state. The verifier authen-the relevant bits in the system’s Device Exclusion Vector (DEV). It
ticates the public AIK by validating the AIK’s certificate chain and  also disables interrupts to prevent previously executing code from re-
deciding whether to trust the issuing Privacy CA. It then validates the gaining control. Debugging access is also disabled, even for hardware
signature on the PCR values and checks that the PCR values corredebuggers. Finally, the processor enters flat 32-bit protected mode
spond to the events in the log by hashing the log entries and compar-and jumps to the provided entry point.
ing the results to the PCR values in the attestation. Finally, it decides ~ SVM also includes support for attesting to the proper invocation
whether to trust the platform based on the events in the log. As origi- of the SLB. As part of theéSKINIT instruction, the processor first
nally envisioned, the verifier must assess a list of all software loaded causes the TPM to reset the values of the dynamic PCRs to zero, and
since boot time (including the OS) and its configuration information, then transmits the (up to 64 KB) contents of the SLB to the TPM so
and decide whether the platform should be trusted. that it can be measured (hashed) and extended into PCR 17. Note that
software cannot invoke the command to reset PCR 17. The only way
2.1.2 TPM-Based Sealed Storage to reset PCR 17 is by executing anott8INIT instruction. Thus,
TPMs also provide sealed storage, whereby data can be encrypteduture TPM attestations can include the value of PCR 17 to attest to
using an asymmetric key whose private component never leavesthe use oSKINIT and to the identity of the SLB loaded.
the TPM in unencrypted form. The sealed data can be bound to a
particular software state, as defined by the contents of various PCRS2 2 2 |ntel Trusted Execution Technology (formerly LT)
The TPM will only unseal (decrypt) the data when the PCRs contain
the same values specified by the seal command. Thus, only specifi
software can retrieve the sealed values.

dntel's TXT is comprised of processor support for virtualization (VT-
x) and Safer Mode Extensions (SMX) [11]. SMX provides support
for the late launch of a VMM in a manner similar to AMD’s SVM, so
2.1.3 Dynamic (Resettable) PCRs we focus primarily on the differences between the two technologies.

The TPM v1.2 specification [24] allows fstaticanddynamicPCRs,  Instead oSKINIT, Intel introduces an instruction call@ENTER

Only a system reboot can reset the value in a static PCR, but under__ A 1ate launch invoked wittSENTERS comprised of two phases.
the proper conditions, the dynamic PCRs 17-23 can be reset to zerd 'St an Intel-signed code module—called the Authenticated Code
without a reboot (a reboot sets the value of PCRs 17—23/{e0 that Module, or ACMod—must be loaded into memory. The platform's

an external verifier can distinguish between a reboot and a dynamicChiPset verifies the signature on the ACMod using a built-in public
reset). Only a hardware command from the CPU can reset PCR 17,key, extends a measurement of thg ACMod into P.CR 17, and flnglly
and the CPU will issue this command only after performing a late executes the ACMod. The ACMod is then responsible for measuring

launch (as described below). Thus, software cannot reset PCR 17he equivalent of AMD's SLB, extending the measurement into PCR

though it can be read and extended before or after a late launch. 18 @nd then executing the code. In analogy to AMD's DEV protec-
tion, Intel protects the memory region containing the ACMod and the

2.2 Late Launch SLB from outside memory access using the Memory Protection Ta-
PUble (MPT). However, unlike the 64 KB protected by AMD’s DEV,

R tl dors AMD and Intel have both rel dC
ecently, processor vendors and Intel have both release Yintel's MPT covers 512 KB by defaut

technology designed to eliminate several of the lower layers of so
ware from a system’s TCB. The capability of performingate
launchis included in AMD CPUs as part of their Secure Virtual Ma- 2 Technically, Intel created a new “leaf” instruction call&ETSEG which
chine (SVM) technology [2], while Intel includes it in their Trusted can be customized to invoke various leaf operations (inoWSENTER




3.2 Threat Model

CPU At the software level, the adversary can subvert all of the legacy
software on the platform, including the OS or VMM. He can also

compromise arbitrary applications and monitor all network traffic.

Since the adversary can run code at ring 0, he can invok8KHhRIT

North or SI_ENTEFa'nstruction vyith arguments of its choosing. We do not
RAM consider DoS attacks, since a malicious OS can always simply power
Bridge down the machine or otherwise halt execution to deny service.
At the hardware level, we make the same assumptions as the

Trusted Computing Group with regard to the TPM [25]. In essence,

smmmm PCl the attacker can launch simple hardware attacks, such as opening the

SOUth case, power cycling the computer, or attaching a hardware debug-

W " . mmmmm USB ger. The attacker can also compromise add-on hardware such as a
‘ Brldge : DMA-capable Ethernet card with access to the PCI bus. However,

4
LPC BUS ! the attacker cannot launch sophisticated hardware attacks, such as
monitoring the high-speed bus linking the CPU, the north bridge, and
Figure 1. Chipset configuration for a modern x86 computer. Shaded com- memory. Again like the Trusted Computing Group, we omit treat-

ponents are part of the minimal TCB for our execution modee TPM is ment of covert channels and side-channel attacks though they would
shaded differently because it is included for practicalseas but is not an be interesting material for future work.
essential part of a stored-program computer architecture. Of course, the PAL itself must be trusted to perform its assigned

task securely. The relatively small size of the PAL may facilitate the
use of formal analysis techniques to verify the code’s security and
3. Execution and Threat Model correctness properties [6].
We define our execution model and its requirements, and detail the3.3 The Secure Execution Architecture (SEA)

threat model motivating our design. ) S
In our SEA [16, 17], the core idea for minimizing the software TCB

3.1 Execution Model and Requirements is to use the late launch operation to execute a Piece of Application

) ) Logic (PAL) in complete isolation from all other software on the sys-
We focus on an execution model designed to execute small blocks ofiem 1o frame it in terms of our requirements from Section 3.1, the

code with the smallest possible TCB. We term each block of code a |ate |aunch operation providescure initializatiopsince it reinitial-
Piece of Application Logic (PAL). ) ] o izes the CPU to a known, trusted state without clearing the contents

Ideally, we would like to enable PAL execution while continuing ¢ memory or device state.
to support legacy code (both operating systems and applications), but  The |ate launch also helps achidselation since it sets up DMA
without suffering significant performance penalties. protections in the north bridge to isolate the PAL from the unshaded

On a modern stored-program computer, the minimal hardware pargware components shown in Figure 1. Since the late launch wipes
TCB includes the CPU, memory (RAM), and the interface between ot the previous execution state, SEA efficiently suspends the un-
the CPU and memory (memory controller, commonly known as the {r,steqd system software before launching the PAL. The suspend of
north bridge). Figure 1 shows a modern system, with shaded TCB {he yntrusted system is efficient because all necessary system state
components. To avoid expanding the TCB any further, we require the o5, simply remain in-place in memory, provided that the PAL is con-
following properties. figured so as not to interfere with the state of the suspended system.
Resuming the suspended system after the PAL terminates is efficient
for similar reasons.

With SEA, the PAL can protect state between executions or con-
text switches by taking advantage of the TPM’s sealed storage capa-
|'bility. During late launch, the TPM’s dynamic PCRs are reset to zero,

. 4 . . . and then PCR(s) 17 (and 18 on Intel systems) are extended with a

On a system with a single CPU, virtual concurrency is achieved by o5 rement of the code that begins executing. Thanks to the prop-
rapidly context switching between threads of execution. This requires erties of the CPU, chipset, and the hash function used for measure-

a secure mechantiﬁm toh prote(;:t the secreCé_and ri]ntegrit)é of PA(Ij' ment [12], these PCR(s) represent the identity of the code loaded for
execution state while other code executes. Given the trend towardsgyecytion, and they cannot be made to contain the measurements of
multi-core CPUs, PAL state must also be protectedng execution,

. -~ . any code without actually loading and executingfinally, since the
since malicious code may be running concurrenitly on another CPU. late launch places a measurement of the PAL in the TPM, the system

executing a PAL can provide aitestationto an external party.
Since SEA requires the TPM for sealed storage and attestations,

Isolation. Execution of the PAL must be protected from legacy
software on the platform, as well as the hardware components not
included in the TCB shown in Figure 1. At the same time, to main-
tain reasonable performance, we need to be able to execute a PA
concurrently with legacy software.

Secure Initialization. The isolation described above is only useful

if PAL execution can be securely initiated. In other words, the legacy \ :

software cannot be trusted to properly initialize the protections nec- g;,i:;::mdm lésigbneofl ﬁ,%?l?dfdsif fﬁz Tr%BB (ssiﬁﬁeFt'ﬁngep}rzxi Eocv;/le\;%rl,etf;?
essary for the PAL'S protection. Hence a mechanism is needed that(:reatin agsecure channel to the PAL (by engaging in secureptrans ort
provides a “clean slate” for PAL execution without actually rebooting 9 y engaging P

the platform. sessions [25]).

Ex_ternal Verification. The isolation and secure initialization prop- 370 be precise, this is a load-time measurement. If the code it
erties allow a PAL to execute unmolested. However, an (_axt_erna_ll party parameters and contains a vulnerability, it may be possilbde¢onrite some
that depends on outputs from the PAL must be able to distinguish be- of the code after measurement and before execution complétiess well-
tween a PAL that was executed with full hardware protections and a known time-of-check, time-of-use problem with load-time st#ion, and is
PAL that was executed in a malicious, e.g., virtual, environment. not unique to our execution model [19].



N X2 Dual Core 4200+ processor and a v1.2 Broadcom TPM. In Sec-
1 tion 4.3, we present additional microbenchmarks on other platforms
. to establish a broader baseline for what kind of performance is avail-
able today.

Seal B Quote
EEE SKINIT EEE Unseal

~ 800 _ Figure 2 summarizes our results (taken over 100 runs with negligi-

g ble variance) and indicates both the total time taken by each PAL, as
- well as the breakdown of the overhead for each. Note that these num-
® 60 7 bers represent pure overhead—the time necessary for application-
-E specific work would be added on top of these measurements. We also

7 include the time required to perform a TPM Quote operation, since
: this operation is needed to create an attestation that will convince an
_ external party that a PAL was executed successfully.

Looking at the breakdown of the execution time, each PAL re-
quires a late launch, represented by 8@NIT region (the PAL uses

0 P en Quote PAL Use the full 64 KB supported by AMD). The PAL Gen session experi-
- ences the additional overhead of sealing data using the TPM’s 2048-
Figure 2. Breakdown of overheads that will be incurred by generic apl bit RSA Storage Root Key. The PAL Use session must perform a

tions implemented in the SEA model. Measurements were teskegm an HP

- TPM Unseal, and may also perform a Seal operation before exiting.
dc5750 containing a 2.2 GHz AMD processor and a Broadcom TPAML

Gen represents the overhead for an application that geesrdata and seals Both TPM Quote and TPM Unseal perform a private RSA operation

it for later use. PAL Use unseals previous state, modifieant] optionally (digital signature and decrypt, respectively), which is their dominant
reseals it. source of overhead.

Our results indicate that the TPM'’s role in protecting PAL state
during a context-switch creates significant amounts of overhead.
. — Storing data for later use requires approximately 200 ms (PAL Gen),
4. Evaluation of Existing Hardware but accessing, modifying, and then storing state (PAL Use) requires
Through macro and microbenchmarks of our implementation on over a second. Note also that this experiment was run on the Broad-
commodity hardware, we evaluate the performance of SEA, and thencom TPM, which had the fastest seal operation of all TPMs that we

conclude with a summary of the issues we identify. tested, as we discuss in the next section.
) o The above overheads are exacerbated by the constraint that no
4.1 Implementing SEA Applications other code can execute during PAL execution. Thus, while a PAL

To evaluate the overheads with which nearly every practical appli- US€ module executes, all other operations on the computer will be
cation built on SEA will have to contend, we have implemented a Suspended for over a second. This overhead is particularly egsegiou
generic framework based on our earlier abstract design [17]. To im- N & multi-processor machine, as the late launch operation requires
plement the SEA model, we developed a Linux kernel module that all but one of the proc,essors to pe in a special idle statfe. As.a result,
suspends the current execution environment and uses late launch tg0St of the computer’s processing power and responsiveneisivan
run a PAL. The PAL is then responsible for resuming the previous for over a second during PAL execution.
execution environment once it finishes its application-specific task. .

On top of this architecture, we built a number of SEA-enhanced 4-3 Microbenchmarks
applications [16]. We implemented a kernel rootkit detector and a To determine if the overheads described above are representative
distributed factoring program that use our architecture to provide of current hardware, we perform a number of microbenchmarks to
isolation and integrity protection. We also use the architecture to measure the time needed by late launch and various TPM operations
protect the confidentiality of a certificate authority’s private signing on two AMD machines and one Intel machine.
key, and to secure an SSH server's password handling routines. The In addition to the AMD HP dc5750 described above, we employ
performance issues we encountered in creating these applications second AMD test machine based on a Tyan n3600R server mother-
inspired the current paper. board with two 1.8 GHz dual-core Opteron processors. This second

Rather than analyze the performance of specific applications, we machine is not equipped with a TPM, but it does support execution of
focus on the performance of two generic PALs. The first PAL (PAL SKINIT. This allows us to isolate the performanceSKINIT with-
Gen launches, generates application-specific data, seals the data usaut the potential bottleneck of a TPM. Our Intel test machine is an
ing the TPM’s sealed storage capability, and exits. For example, our MPC ClientPro Advantage 385 TXT Technology Enabling Platform
certificate authority and SSH PALs each generate a key, seal the pri-(TEP), which contains a 2.66 GHz Core 2 Duo processor, an Atmel
vate portion for later use, and then return the public key. The secondv1.2 TPM, and the DQ965CO motherboard.
PAL (PAL Usg launches, unseals data sealed during a previous ses-  Since we have observed that the performance of different TPM
sion, and operates on that data. It optionally reseals the data and exitsimplementations varies considerably, we also evaluate the TPM per-
In the certificate authority example, the PAL might unseal the private formance of two other machines with a v1.2 TPM: a Lenovo T60
key and sign some data with it. This example would not require a sub- laptop with an Atmel TPM, and an AMD workstation with an Infi-
sequent seal, since the unsealed key could simply be erased. On theeon TPM.
other hand, an application performing a distributed computing task  All of our timing measurements use tRDTSCCPU instruction
(such as our factoring application or SETI@Home [3]) might per- to count CPU cycles. We convert cycles to milliseconds based on
form a limited amount of work and then seal its intermediate state so each machine’s CPU speed, obtained by readingc/cpuinfo.
that it can later resume its computations.

4.3.1 Late Launch with an AMD Processor

4.2 End-to-End Benchmarks AMD SVM supports late launch via th8KINIT instruction. The

To evaluate at a macro level the amount of overhead encountered byoverhead of theSKINIT instruction can be broken down into three
UseandGenPALs, we measured the performance of our implemen- parts: (1) the time to place the CPU in an appropriate state with pro-
tation on an HP dc5750, which contains a 2.2 GHz AMD Athlon64 tections enabled, (2) the time to transfer the PAL to the TPM across



CPU ] . PAL Size
TPM | Vendor | System Configuration | s yp 1 4 kB | 8KB | 16 KB | 32KB | 64 KB
Yes | avp | HPdc5750 Avg (ms): | 0.00 | 11.94| 2298 | 45.05| 89.21| 177.52
No Tyan n3600R Avg (ms): | 0.01| 056 | 1.11 2.21 441 8.82
Yes [ Intel TEP Avg (ms): 26.39 | 26.88 | 27.38| 28.37| 30.46| 34.35

Table 1. SKINIT and SENTER benchmarks. We run SKINIT benchmarks dh #ldtems with and without a TPM to isolate the overhead ofStKENIT
instruction from the overhead induced by the TPM. We alsdSENTER benchmarks on an Intel machine with a TPM.

the low pin count (LPC) bus, and (3) the time for the TPM to hash the The slow increase in the overheadSENTERrelative to the size
PAL and extend the hash into PCR 17. To investigate the breakdownof the PAL is a result of where the PAL is hashed. On an Intel
of the instruction’s performance overhead, we ran $dNIT in- platform, the ACMod hashes the PAL on the main CPU and hence
struction on the HP dc5750 (with TPM) and the Tyan n3600R (with- sends only a constant amount of data across the LPC bus. In contrast,
out TPM) with PALSs of various sizes. We involRDTSCbefore ex- an AMD system must send the entire PAL to the TPM and wait for the
ecutingSKINIT and invoke it a second time as soon as code from the TPM to do the hashing Table 1 suggests that for large PALs, Intel's
PAL can begin executing. implementation decision pays off. Further reducing the size of the
Table 1 summarizes the timing results. The measurements for theACMod would improve Intel's performance even more. The gradual
empty (0 KB) PAL indicate that placing the CPU in an appropriate increase inNSENTERs runtime with increase in PAL size is most
state introduces relatively little overhead (less than&p The Tyan likely attributable to the hash operation performed by the ACMod.
n3600R (without TPM) allows us to measure the time needed to  On an Intel TXT platform, the ACMod verifies that system con-
transfer the PAL across the LPC bus. The maximum LPC bandwidth figuration is acceptable, enables chipset protections such as the initial
is 16.67 MB/s, so the fastest possible transfer of 64 KB is 3.8 ms [9]. memory protections for the PAL, and then measures and launches the
Our measurements agree with this prediction, indicating that it takes PAL [8]. On AMD SVM systems, microcode likely performs similar
about 8.8 ms to transfer a 64 KB PAL, with the time varying linearly operations, but we do not have complete information about AMD

for smaller PALs. CPUs. Since Intel TXT measures the ACMod into a PCR, an Intel
Unfortunately, our results for the HP dc5750 indicate that the TXT attestation to an external verifier may contain more information
TPM introduces a significant delay to t&&INIT operation. We in- about the challenged platform and may allow an external verifier to

vestigated the cause of this overhead and identified the TPM as causmake better trust decisions.
ing a reduction in throughput on the LPC bus. The TPM slows down )
SKINIT runtime by causingpng wait cycleson the LPC busSKINIT 4.3.3 Trusted Platform Module (TPM) Operations

sen_ds the contents of the PAL to a TPM to be hashed using _the fo"Though Intel and AMD send different modules of code to the TPM
lowing TPM command sequencERM_HASH_START, zero or more in- sing therPM_HASH_* command sequence, this command sequence is
vocations of TPM_HASH DATA (each sends one to four bytes of the responsible for the majority of late launch overhead. More significant
PAL to the TPM), and finallyrPM_HASH END. The TPM specifica- {5 gverall PAL overhead, however, is SEA’s use of the TPM’s sealed
t|0r_1 states that each of these commands may take up the lpmiiye storage capabilities to protect PAL state during a context switch.
wait cycleof the control flow mechanism built into the LPC bus that 14 nderstand whether the generic overheads from Figure 2 are
connects the TPM [24]. Our results suggest that the TPM is indeed representative, we perform TPM benchmarks on four differeM3.P
utilizing most of thelong wait cyclefor each of the commands, and  Tyg of these are the TPMs in our already-introduced HP dc5750 and
as aresult, the TPM contributes almost 170 ms of overhead. This may|nie| TEP. The other two TPMs are an Atmel TPM (a different model
be either a result of the TPM’s low clock rate or an inefficientimple-  nan that included in our Intel TEP) in an IBM T60 laptop, and an
mentation, and is not surprising given the low-cost nature of today’s |nfineon TPM in an AMD system.
TPM chips. The 8.82 ms taken by the Tyan n3600R may be represen-  \ye evaluate the time needed for relevant operations across sev-
tative of the performance of future TPMs which are able to operate at o4) gifierent TPMs. These operations are: PCR Extend, Seal, Un-
maximum bus speed. seal, Quote, and GetRandom. Figure 3 shows the results of our TPM
microbenchmarks. The results show that different TPM implementa-
4.3.2 Late Launch with an Intel Processor tions optimize different operations. The Broadcom TPM in our pri-
mary test machine is the slowest for Quote and Unseal. Switching
to the Infineon TPM (which has the best average performance across
the relevant operations) would reduce the TPM-induced overhead for
a combined Quote and Unseal by 1132 ms, although it would also
add 213 ms of Seal overhead. Even if we choose the best performing
TPM for each operation (which is not necessarily technically feasible,
since a speedup on one operation may entail a slowdown in another),
a PAL Gen would still require almost 200 ms (177 ms 8KINIT
and 20.01 ms for the Broadcom Seal), and a PAL Use could require
at least 579.37 ms (177 ms f8KINIT, 390.98 ms for the Infineon
Unseal, and 11.39 ms for the Broadcom Seal). These values indicate
that TPM-based context-switching is extremely heavy-weight.

Recall from Section 2.2.2 that Intel's late launch consists of two
phases. First, the ACMod is extended into PCR 17 using the same
TPM_HASH_START, TPM_HASH_DATA, and TPM_HASH_END command
sequence used by AMDSKINIT. The ACMod then hashes the PAL
on the main CPU and uses an ordin@BM_Extend operation to
record the PAL’s identity in PCR 18. Thus, only the 20 byte hash of
the PAL is passed across the LPC to the TPM in the second phase.
The last row in Table 1 presents experimental results from invok-
ing SENTERon our Intel TEP. Interestingly, the overhead SEN-
TERIs initially quite high, and it grows linearly but slowly. The large
initial overhead (26.39 ms) results from two factors. First, even for
a 0 KB PAL, the Intel platform must transmit the entire ACMod to
the TPM a_nd wait for the_ TPM FO hash it. The ACMO.d. iS just over 4There is no technical reason why a PAL for an AMD system carueot
10 K_B' which matches nicely with the faCt_that the 'nmal overhead written in two parts: one that is meaysured as padkfNIT anc)il another that
falls in between the overhead for SiKINIT with PALs of size 8 KB is measured by the first part before it receives control. Thillsewable a PAL
(22.98 ms) and 16 KB (45.05 ms). The overheadS&NTERalso on AMD systems to achieve improved performance, and suggestaihD’s
includes the time necessary to verify the signature on the ACMod.  mechanism is more flexible than Intel’s.




B2 T60 Atmel
800~ | Broadcom T
[ Infineon
[ |[E3 TEP Atme |
© 600 4
S
~— L 4
)
E a00- -
'_

200

Seal Quote .nseal GetRand 12¢
TPM Operation

PCR Extend

Figure 3. TPM benchmarks run against the Atmel v1.2 TPM in a Lenovo
T60 laptop, the Broadcom v1.2 TPM in an HP dc5750, the InfindoR TPM

in an AMD machine, and the Atmel v1.2 TPM (note that this iglm@same as
the Atmel TPM in the Lenovo T60 laptop) in the Intel TEP. Elrars indicate

the standard deviation over 20 trials (not all error bars ansible).

4.4 Major Performance Problems

Our experiments reveal two significant performance bottlenecks for
minimal TCB execution on current CPU architectures: (1) on a multi-
CPU machine, the inability to execute PALs and untrusted code
simultaneously on different CPUs, and (2) the use of TPM Seal and

Unseal to protect PAL state during a context switch between secure

and insecure execution.

The first issue exacerbates the second, since the TPM-based ove

heads apply to the entire platform, and not only to the running PAL,
or even only to the CPU on which the PAL runs. With TPM-induced
delays of over a second, this results in significant overhead. While

this overhead may be acceptable for a system dedicated to a partic

ular security-sensitive application, it is not generally acceptable in a
multiprogramming environment.

5. Architectural Recommendations

r

Legacy OS and PAL PAL PAL
Applications 1 2 n
(cru)(cru) (cru) (cru) CPU

Figure 4. Physical platform running a legacy OS and applications alon
with some number of PALs.

we believe this risk is unavoidable, as the untrusted OS can always
simply power down or otherwise crash the system.

There are two new hardware mechanisms required to achieve our
desired execution model (Figure 4) while simultaneously satisfying
the two requirements mentioned in the previous paragraph. The first
is a hardware mechanism for memory isolation that isolates the mem-
ory pages belonging to a PAL from all other code. The second is
a hardware context switch mechanism that can efficiently suspend
and resume PALs, without exposing a PAL’s execution state to other
PALs or the untrusted OS. In addition to these two mechanisms, we
also require modifications to the TPM to allow external verification
via attestation when multiple PALs execute concurrently.

In the rest of this section, we first describe PAL launch (Sec-
tion 5.1), followed by our proposed hardware memory isolation
mechanism (Section 5.2). Section 5.3 talks about the hardware con-
text switch mechanism we propose. In Section 5.4 we describe
changes to the TPM chip to enable external verification. We de-
scribe PAL termination in Section 5.5. Section 5.6 ties these recom-
mendations together and presents the life-cycle of a PAL. Finally,
Section 5.7 summarizes the expected performance improvement of
our recommendations.

5.1 Launching a PAL

We propose a mechanism for securely launching a PAL to achieve

the Secure Initializatiorsecurity property from Section 3.1.

5.1.1 Recommendation

First, we recommend that the untrusted OS allocate resources for
a PAL. Resources include execution time on a CPU and a region

In this section, we make hardware recommendations to alleviate theof memory to store the PAL’s code and data. We defireeaure
performance issues we summarize in Section 4.4, while maintaining Execution Control BlocKSECB, Figure 5(a)) as a structure to hold

the security properties of SEA. Specifically, the goal of these recom- PAL state and resource allocations, both for the purposes of launching

mendations is twofold: (1) to enable the concurrent execution of an @ PAL and for storing the state of a PAL when itis not executing. The

arbitrary number of mutually-untrusting PALs alongside an untrusted PAL and SECB should be contiguous in memory to facilitate memory

legacy OS and legacy applications, and (2) to enable performant Con_ISO|at|0n mechanisms. The SECB entry for allocated memory should

text switching of individual PALs. A system achieving these goals consist of a list of physical memory pages allocated to the PAL.

supports multiprogramming with PALs, so that there can be more  To begin execution of a PAL described by a newly allocated

PALs executing than there are physical CPUs in a system. It also SECB, we propose the addition of a new CPU instructiecure

enables efficient use of the execution resources available on today’s-aunch(SLAUNCH), that takes as its argument the starting physical

multicore computing platforms. Figure 4 shows an example of our address of a SECB. Upon executi@L,AUNCH

desired execution model. Note that we assume that a PAL only exe- 1. reinitializes the CPU on which it executes to a well-known trusted

cutes on one CPU core at a time, but Section 6 discusses extensionto state,

multiple cores. 2. enables hardware memory isolation (described in Section 5.2) for
~ We have two requirements for the recommendations we make.  the memory region defined in the SECB and for the SECB itself,

First, our recommendations must make minimal modifications to the 3. transmits the PAL to the TPM to be measured (described in

architecture of today’s trusted computing technologies: AMD SVM Section 5.4),

and InteI_T_XT. Admittedly, suc_h arequirement narrows the_s_cope of 4. disables interrupts on the CPU executBIGAUNCH

our creativity. However, we believe that by keeping our modifications 5. initializes the stack pointer to the tob of the memory region

minimal, our recommendations are more likely to be implemented by ~* defined in the SECBp(aIIowin the PAFI)_ to confirm theysizg of

hardware vendors. Second, in order to keep our execution architec- its dat - 9

ture as close to today’s systems architectures as possible, we require its data memory region),

that the untrusted OS retain the role of the resource manager. With 6- Sets thévleasured Flagn the SECB to indicate that this PAL has
been measured, and

this requirement, we open up the possibility that the untrusted OS _ °* ‘ ] ] )
could perform denial-of-service attacks against the PALs. However, 7- jumps to the PAL’s entry point as defined in the SECB.



CPU State

. - . . General purpose registers
We can modify the existing hardware virtual machine management Flags, condition codes

data structures of AMD and Intel to realize the SECB. Both AMD and Instruction pointer
Intel use an in-memory data structure to maintain guest 3take Stack pointer

functionality of SLAUNCHwhen used to begin execution of a PAL is etc.

5.1.2 Suggested Implementation based on Existing Hardware

designed to give the same security properties as to&¥fblIT and

Memory Pages ]

SENTERnNSstructions.
_ [ Resume Flag ]
5.2 Hardware Memory Isolation Preemption Timer
To securely execute a PAL using a minimal TCB, we need a hardware sePCR Handle
mechanism to isolate its memory state from all devices and from PAL Length | Entry Point
all code executing on other CPUs (including other PALs and the
untrusted OS and applications). This mechanism will achieve the (2) SECB structure. (b) Page states.

Isolationproperty from Section 3.1.
) Figure 5. State machine for the possible states of a memory page in our
5.2.1 Recommendation proposed memory controller modification. The states cpoed to which

We propose that the memory controller maintain an access control €PUS can access an individual memory page.
table with one entry per physical page, where each entry specifies
which CPUs (if any) have access to the physical page. The size of
this table will beM x N, whereM is the number of physical pages
present on the platform an¥ is the maximum number of CPUs.
Other multiprocessor designs use a similar partitioning system to
protect memory from other processors [13]. To use the acces®ton
_ta_b_le, the memory controller must be able to determine which CPU 5 3 Hardware Context Switch
initiates a given memory request. ) ) .

Figure 5(b) presents the state machine detailing the possible stated© enable multiplexing of CPUs between multiple PALs and the
of an entry in the access control table as context switches (described!ntrusted OS, a secure context switch mechanism is required. Our

Modern OSes support discontiguous physical memory for structures
like the AGP graphics aperture, which require the OS to relinquish
certain memory pages to hardware. These mechanisms can be modi-
fied to tolerate the allocation of memory to PALSs.

in Section 5.3) occur. Memory pages are by default marked mechanism retains the legacy OS as the primary resource manager
to indicate that they are accessible by all CPUs and DMA-capable 0N & system, allowing it to specify on which CPU and for how long a
devices. The other states are described below. AL can execute.

When PAL execution is started usir®AUNCH the memory 31 Recommendation
controller updates its access control table so that each page aIIocateg e
to the PAL (as specified by the list of memory pages in the SECB) We first treat the mechanism required to cause an executing PAL to
is accessible only to the CPU executing the PAL. When the PAL is Yield, and then detail how a suspended PAL is resumed.
subsequently suspended, the state of its memory pages ransitions tg) yield. We recommend the inclusion of a PAL preemption
NONE, indicating that nothing currently executing on the platform imer in the CPU that can be configured by the untrusted OS. When
is allowed to read or write to those pages. Note that the memory e timer expires, or a PAL voluntarily yieids, the PAL’s CPU state
allocated to a PAL includes space for data, and is a superset of theghqq be automatically and securely written to its SECB by hard-
pages containing the PAL binary. ware, and control should be transferred to an appropriate handler in
the untrusted OS. To enable a PAL to voluntarily yield, we propose
) ) ] ) .. the addition of a new CPU instructioBecure YieldSYIELD. Part
We can realize hardware memory isolation as an extension to existingof writing the PAL'’s state to its SECB includes signaling the memory
DMA protection mechanisms. As noted in Section 2.2, AMD SVM  controller that the PAL and its state should be inaccessible to all en-
and Intel TXT already support DMA protections for physical mem- tities on the system. Note that any microarchitectural state that may
ory pages. In both protection systems, the memory controller main- persist long enough to leak the secrets of a PAL must be cleared upon
tains a bit vector with one bit per physical page. The value of the paL yield.
bit indicates whether the corresponding page can be accessed (read )
or written) using a DMA operation. One implementation strategy for PAL Resume. The untrusted OS can resume a PAL by executing
our recommendations may be to increase the size of each entry in this?h SLAUNCHon the desired CPU, parameterized with the physical
protection table to include a bit per CPU on the system. address of the PAL's SECB. The PALMeasured Flaglndlcate_s
Existing memory access and cache coherence mechanisms cafP the CPU that the PAL has already been measured and is only
be used to provide the necessary information to enforce memory P€ing resumed, not started for the first time. Note thaMeasured
isolation. Identifying the CPU from which memory requests originate Flag is honored only if the SECB’s memory page is SeNONE.
is straightforward, since memory reads and writes on different CPUs This prevents the untrusted OS from invoking a PAL without it
already operate correctly today. For example, every memory reques P€ing measured by the TPM. During PAL resume, $1AUNCH
from a CPU in an Intel system includes agent IDthat uniquely instruction will signal the memory controller that the PAL's state
identifies the requesting CPU to the memory controller [21]. should be accessible to the CPU on which the PAL is now executing.
pages that it allocates to the PALs, and so supporting the execution off€Sumed. Once a PAL is executing on a CPU, any other CPU that

PALs requires the OS to cope with discontiguous physical memory. tries to resume the same PAL will fail, as that PAL's memory is
inaccessible to the other CPUs.

5.2.2 Suggested Implementation based on Existing Hardware

5These structures are the Virtual Machine Control Block (VB)@nd Virtual . .
Machine Control Structure (VMCS) for AMD and Intel, respeely. 5.3.2  Suggested Implementation based on Existing Hardware

6 The protection mechanisms are the Device Exclusion VectoWMj#d the We achieve significant performance improvements by eliminating the
Memory Protection Table (MPT) for AMD and Intel, respectivel use of TPM sealed storage as a protection mechanism for PAL state



) AMD SVM Intel TXT 5.4.1 sePCR Assignment and Communication
Operation ‘

Avg (us) | Stdev | Avg (us) | Stdev Challenge 1 specifies that a PAL must be bound to a unique sePCR
VMEnter | 0.5580 | 0.0028| 0.4457 | 0.0029 while it executes. The binding of the sePCR to the PAL must prevent
VM Exit 0.5193 | 0.0036| 0.4491 | 0.0015 other code (PALs or the untrusted OS) from extending or reading the

sePCR until the PAL has terminated. We describe how the TPM and
Table 2. Benchmarks showing the average runtime of VM Entry and VM CPU communicate to assign a sePCR to a PAL duBhgUNCH
Exit on the Tyan n3600R with a 1.8 GHz AMD Opteron and the MAENEI As part of SLAUNCH the contents of the PAL are sent from
Pro 385 with a 2.66 GHz Intel Core 2 Duo. the CPU to the TPM to be measured. The arrival of these messages
signals the TPM that a new PAL is starting, and the TPM assigns a
free sePCR to the PAL being launched. The sePCR is reset to zero and
during context switches. Existing hardware virtualization extensions extended with a measurement of the PAL. If no sePCR is available,
of AMD and Intel support suspending and resuming guest VMs. SLAUNCHmust return a failure code.
We can enhance these mechanisms to provide secure context switch As part of SLAUNCH the TPM returns the allocated sePCR’s
by extending the memory controller to isolate a PAL's state while handle to the CPU executing the PAL. This handle becomes part of
it is executing, even from an OS. Table 2 shows that with current the PAL'’s state, residing in the CPU while the PAL is executing and
hardware, VM entry and exit overheads are on the order of half written to the PAL's SECB when the PAL is suspendethe handle
a microsecond. Reducing the context switch overhead of betweenis also made available to the executing PAL. One implementation
approximately 200 ms and a full second for the TPM sealed storage-strategy is to make the handle available in one of the CPU’s general
based context switch mechanism (recall Figure 2) to essentially the purpose registers when the PAL first gets control.
overhead of a VM exit or entry would be a pronounced improvement. TPM Extend, Seal, and Unseal must be extended to optionally ac-
cept a PAL’'s sePCR as an argument, but only when invoked from
5.4 TPM Support for SEA within that PAL. The CPU, memory controller, and TPM must pre-
Thus far, our focus has been on recommendations to alleviate thevent other code from invoking TPM Extend, Seal, or Unseal with a
two performance bottlenecks identified in Section 4.4. Unfortunately, PAL's sePCR. Enforcement can be performed by the CPU or memory
the functionality of today’s TPMs is insufficient to provide measure- controller using the CPU’s copy of the PAL’s sePCR handle. These
ments, sealed storage, and attestations for multiple, concurrently ex-+estrictions do not apply to TPM Quote, as untrusted code will even-
ecuting PALs. These features are essential to achiev&tternal tually need the PAL’s sePCR handle to generate a TPM Quote. We
Verificationproperty from Section 3.1. describe its use in more detail in Section 5.4.3.

As implemented with today’s hardware, SEA always uses PCR 17 Note that the TPM in today’s machines is a memory-mapped de-
(and 18 on Intel systems) to store a PAL’'s measurement. The additionvice, and access to the TPM involves the memory controller. The ex-
of the SLAUNCHinstruction introduces the possibility of concurrent ~ act architectural details are chipset-specific, but it may be necessary
PAL execution. When executing multiple PALs concurrently, today’s to enable the memory controller to cache the sePCR handles during
TPMs do not have enough PCR registers to securely store the PALs’SLAUNCHto enable enforcement of the PAL-to-sePCR binding and
measurements. Further, since PALs may be context switched in andavoid excessive communication between the CPU and memory con-
out, there can be many more PALs executing than there exist CPUstroller during TPM operations.
on the system.

Ideally, the TPM should maintain a separate measurement chain®-4-2 SePCR Access Control
for each executing PAL, and the measurement chain should indicateChallenge 2 is to render a PAL's sePCR inaccessible to all other code.
that the PAL began execution via tis AUNCHinstruction. These This includes concurrently executing PALs and the untrusted OS.
are the same properties that late launch provides for one PAL today. This condition must hold whether the PAL is actively running on a

We propose the inclusion of additionsécure executioCRs CPU or context switched out.

(sePCRs) that can be bound to a PAL duBitcAUNCH The number The binding between a PAL and its sePCR is maintained in hard-
of sePCRs present in a TPM establishes the limit for the number of ware by the CPU and TPM. Thus, a PAL’s sePCR handle need not be
concurrently executing PALs, as measurements of additional PALs dosecret, as other code attempting any TPM commands with the PAL’s
not have a secure place to reside. The PAL must also learn the identitysePCR handle will fail. PAL code is able to access its own sePCR to
of its sePCR so that it can output a sePCR handle usable by untrustednvoke TPM Extend to measure its inputs, or TPM Seal or Unseal to

software to generate a TPM Quote once execution is complete. protect secrets, as described in the previous section.
However, the addition of sePCRs introduces several challenges: A PAL needs exclusive access to its sePCR for the TPM Extend,
1. A PAL must be bound to a unique sePCR (Section 5.4.1). Seal, and Unseal operations. Allowing, e.g., a TPM PCR Read by

2. A PAL's sePCR must be inaccessible to all other code until the Other code does not introduce a security vulnerability for a PAL.
PAL terminates (Section 5.4.2). However, we cannot think of a scenario where it is beneficial, and

3. TPM Quote must be able to address the sePCRs when invokecf]
from untrusted code (Section 5.4.3).

4. A PAL that used TPM Seal to seal secrets to one sePCR must5.4.3 sePCR States and Attestation

be_ able to “r?sea' Its secrets In the future, even if that_ PAL ter- The previous section describes techniques that give a PAL exclusive
minates and is assigned a different sePCR on its next invocation y .o 't its sePCR. However, Challenge 3 states our aim to allow
(Section 5.4.4). o . ) TPM Quote to be invoked from untrusted code. To enable these
5 A hardWare meChanlsm IS reql,”red to al’bl'[l’ate TPM access from Semantics' sePCRs exist in one Of three st&teslusive' Quote,
multiple CPUs (Section 5.4.5). and Free. While a PAL is executing or context-switched out, its
Below, we present additional details for each of these challenges andsePCR is in th&xclusive state. No other code on the system can
propose solutions. read, extend, reset, or otherwise modify the contents of the sePCR.

llowing sePCR access from other code for selected commands may
nnecessarily complicate the access control mechanism.

7 A guest yields by executing VMMCALL / VMCALL. A VMM resumes a 8This is similar to the handling of Machine Status RegisterSRd) by AMD
guest by executing VMRUN / VMRESUME for AMD and Intel, restigely. SVM and Intel TXT for virtualized CPU state today.



When the PAL terminates, untrusted code is tasked with generat- Abnormal Exit. The code in a PAL may contain bugs or exploitable
ing an attestation of the PAL’s execution. The purpose ofjiete flaws that cause it to deviate from the intended termination sequence.
state is to grant the necessary access to the untrusted code. Thus, &or example, it may become stuck in an infinite loop. The preemption
part of PAL termination, the CPU must signal the TPM to transition timer discussed in Section 5.3 can preempt the misbehaving PAL, but
this PAL’s sePCR from thBxclusive to theQuote state. the memory allocated to that PAL remains in Nf@XE state, and the

To generate the quote, the untrusted code must be able to specifysePCR allocated to that PAL remains in fxlusive state. These
the handle of the sePCR to use. It is the responsibility of the PAL resources must be freed without exposing any of the PAL’s secrets to
to include its sePCR handle as an output. The TPM Quote commandother entities on the system.
must be extended to optionally accept a sePCR handle instead of (or We propose the addition of a new CPU instructi®ecure Kill
in addition to) a list of regular PCR registers to include in the quote. (SKILL), to kill a misbehaving PAL. Its operations are as follows:

After a TPM Quote is generated, the TPM transitions the sePCR 1. Erase all memory pages associated with the PAL.
to the Free state, where it is eligible for use by another PAL 2. Mark the PAL's memory pages as available\ld..

via SLAUNCH This can be realized as a new TPM command, , s -
TPM_SEPCR_Free, executable from untrusted code. We treat the case 3. Extend the PAL’s sePCR with a well known constant that indi-
cates thaSKILL was executed.

where a PAL does not terminate cleanly in Section 5.5. o
4. Transition the PAL’s sePCR to tiieee state.

5.4.4  Sealing Data Under a sePCR Depending on low-level implementation detai®KILL may be
TPM Seal can be used to encrypt data such that it can only be merged withSFREE One possibility is thaSFREEbehaves identi-
decrypted (using TPM Unseal) if the platform is in a particular cally to SKILL whenever it is executed outside of a PAL.
software configuration, as defined by the TPM's PCRs. TPM Seal
and Unseal must be enhanced to work with our proposed sePCRs. 5.6 PAL Life Cycle
A PAL is assigned a free sePCR by the TPM wIS#rAUNCHis Figure 6 summarizes the life cycle of a PAL on a system with our
executed on a CPU. However, the PAL does not have control over recommendations. To provide a better intuition for the ordering of
which sePCR it is assigned. This breaks the traditional semantics events, we step through each state in detail. We also provide pseu-
of TPM Seal and Unseal, where the index of the PCR(s) that must docode forSLAUNCH and indicate which states of a PAL’s life cycle
contain particular values for TPM Unseal are known at seal-time. To correspond to portions of tH&LAUNCHpseudocode (Figure 7).
meet Challenge 4, we must ensure that a PAL that uses TPM Seal to
seal secrets to its assigned sePCR will be able to unseal its secretsaunch: Protect and Measure. The untrusted OS is responsible for
in the future, even if that PAL terminates and is assigned a different creating the necessary SECB structure for a PAL so that the PAL can
sePCR when it executes next. be executed. The OS allocates memory pages for the PAL and sets
We propose that TPM Seal and Unseal accept a boolean flag thathe PAL's preemption timer. The OS then invokes BIEAUNCH
indicates whether to use a sePCR. The sePCR to use is specifiedPU instruction with the address of the SECB, initiating the tran-

implicitly by the sePCR handle stored in the PAL’s SECB. sition from theStart state to theProtect state in Figure 6. This
o causes the CPU to signal the memory controller with the address
5.4.5 TPM Arbitration of the SECB. The memory controller updates its access control ta-

Today’s TPM-to-CPU communication architecture assumes the useble (recall Section 5.2) to mark the memory pages associated with
of software locking to prevent multiple CPUs from trying to access the SECB as being accessible only by the CPU which executed the
the TPM concurrently. With the introduction §LAUNCH we re- SLAUNCHinstruction. If the memory controller discovers that an-
quire a hardware mechanism to arbitrate TPM access from PALs ex-0ther PAL is already using any of these memory pages, it signals the
ecuting on multiple CPUs. A simple arbitration mechanism is hard- CPU thatSLAUNCHmust return a failure code. Once the memory
ware locking, where a CPU requests a lock for the TPM and obtains Protections are in place, the memory controller signals the CPU. The
the lock if it is available. All other CPUs learn that the TPM lock is CPU inspects théleasured Flagand begins the measurement pro-

set and wait until the TPM is free to attempt communication. cess since itis clear. Thdeasured Flagn the SECB (Figure 5(a)) is
) used to distinguish between a PAL that is being executed for the first
5.5 PAL Exit time and a PAL that is being resumed. This completes the transition

When a PAL finishes executing, its resources must be returned to theffom theProtect state to theleasure state.
untrusted OS so that they can be allocated to another PAL or legacy ~ The CPU then begins sending the contents of the PAL to the TPM
application that is ready to execute. We first describe this process forto be hashed. When the first message arrives at the TPM, the TPM

a well-behaved PAL, and then discuss what must happen for a PAL attempts to allocate a sePCR for this PAL. A free sePCR is allocated,
that crashes or otherwise exits abnormally. reset, and then extended with a measurement of the contents of the

. . . PAL. The TPM returns a handle to the allocated sePCR to the CPU,
Normal Exit. The memory pages for a PAL that are inaccessible 10 \yhere jt is maintained as part of the SECB. If there is no sePCR
the remainder of the system must be freed when that PAL completesava”ame’ the TPM returns a failure code to the CPU. The CPU
execution. It is the PAL’s responsib!lity to erase any secrets that it signals the memory controller to return the SECB'’s pages to the
created or accessed before freeing its memory. To free this memory,,ry state, andSLAUNCHreturns a failure code. Upon reception of
we propose the addition of a new CPU instructi@ecure Freé  he sepCR handle, the CPU sets Measured Flagior the PAL to
(SFREE. SFREEis parameterized with the address of the PAL'S jnqicate that it has been measured. The completion of measurement
SECB, and communicates to the memory controller that these pages.ases a transition from theasure state to th&xecute state.
no longer require protection. The memory controller then updates its
access control table to mark these page&lLasso that the untrusted  Execute. At this point, the PAL is executing with full hardware
OS can allocate them elsewhere. Note BiBREEexecuted by other protections. It is free to complete whatever application-specific task
code must fail. This can be detected by verifying that 8 &REE it was designed to do. If it requires data from an external source (e.g
instruction resides at a physical memory address inside the PAL’s network or disk), it may yield by executinYIELD If it has been
memory region. As part 8FREE the CPU also sends a message to running for too long, the CPU may preempt it. These events affect
the TPM to cause the terminating PAL’s sePCR to transition from the transitions to theSuspend state. If the PAL is ready to exit, it can
Exclusive state to th@uote state. transition directly to th®one state by executinGFREE
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Complete SFREE
(Qweasure )===-(_Execute J——(__Done )

Preempted

or SYIELD
SLAUNCH

MF=1

Figure 6. Life cycle of a PAL. MF stands fdvleasured FlagNote that these
states are for illustrative purposes and need not be reprteskin the system.

SKILL

Suspend: Preempted or SYIELD. The PAL is no longer executing,

and it must transition securely to tBespend state. The CPU signals

the memory controller that this PAL is suspending, and the mem-
ory controller updates its access control table for that PAL’'s memory
pages tal0NE, indicating that those pages should be unavailable to all
processors and devices until the PAL resumes. Once the protections
are in place, the memory controller signals the CPU, and the CPU
completes the secure state clear (e.g., it may be necessary to clear
microarchitectural state such as cache lines). At this point, the PAL is
suspended. If the OS has reason to believe that this PAL is malfunc-
tioning, it can terminate the PAL using tiKILL instruction.SKILL
causes a transition directly to thene state.

Resume. The untrusted OS invokes tf&l AUNCHinstruction on
the desired CPU to resume a PAL, again with the address of the

Start:

OS: Allocate pages for SECB and PALP
OS: Initialize SECB.pages

OS: Initialize SECB.timer

Protect:

CPU;: SLAUNCH(S)

CPU;: Reinitialize to trusted state

CPU;: Disable interrupts

CPU; to MC: SECB.pages

MC: if(3p € SECB.pages s.p.accessible = NONE) FAIL
MC: Vp € SECB.pagesp.accessible = CPU;

MC to CPU;: done

CPU;: ESP=SECB.pages.top

Measure:
if(-SECB.MeasuredFlag)
CPU;: send PAL to TPM
TPM: Allocate sePCR
MC: if(—3¢ € sePCRs s.t. sePCR][state= Quote) FAIL
TPM: h = SHA-1(PAL)
TPM: sePCR{] =0
TPM: sePCR{] = SHA-1(sePCR{]||h)
TPM to CPU: done
CPU;: SECB.MeasuredFlag 1

Execute:
CPU;: EIP=SECB.pages.eip
CPUj;: Begin executing

PAL's SECB. The causes a transition from tBespend state to
theProtect state. The CPU signals the memory controller with the

Figure 7. SLAUNCH pseudocode.

SECB'’s address, just as whenotect was reached from the initial

Start state. The memory controller enables access to the PAL’s

memory pages by removing th@NE status on the PAL's memory

pages, setting them as accessible only to the CPU executing the PAL.

The memory controller signals an error if these pages were in use Unseal requires 290-900 ms (Figure 3). Thus, context switching into
by another CPU. The memory controller then signals the CPU that & PAL (which requires unsealing prior data) can take over 1000 ms,
protections are in place. Théeasured Flags set, indicating that the ~ while context switching out (which requires sealing the PAL's state)

PAL has already been measured, so the CPU reloads the suspende@an require 20-500 ms. Further, existing hardware has no facility for
architectural state of the PAL and directly resumes executing the guaranteeing that a PAL can be preempted (to prevent it from com-
PAL’s instruction stream, causing a transition from thetect to promising system availability).

theExecute state. With our recommendations, we eliminate the use of TPM Seal

] ) ) ) ) and Unseal during context switches and only require that the TPM
Exit. While executing, the PAL can signal that it has completed measure the PAL once (instead of on every context switch). We
execution withSFREE This causes the CPU to send a message to expect that an implementation of our recommendations can achieve
the TPM indicating that the PAL's sePCR should transition to the pAL context switch times on the order of those possible today using
Quote state. It is assumed that the PAL has already completed anhardware virtualization support, i.e., 0/6 on current hardware
application-level state clear. The CPU then performs a secure state(Taple 2). This reduces the overhead of context switches by sixorder
Clear Of arCh|teCtUraI and m|Cr0arCh|tectura| State, and Slgnals to theof magnitude (from 200-1000 ms on current hardware) and hence
memory controller that this PAL has exited. The memory controller makes it significantly more practical to switch in and out of a PAL.
marks the relevant pages as available to the remainder of the system Taken together’ these improvements he|p make minimal TCB
by transitioning them to thaLL state. This CPU is now finished  code execution with our SEA a practical and effective way to achieve
eXeCUtlng PAL COde, as indicated by the transition tolitwee state. secure Computation on Commodity SystemS, while only requiring
It becomes available to the untrusted OS for use elsewhere. relatively minor changes in existing technology.

As an alternative to our recommended hardware modifications,
we could instead consider increasing the speed of the TPM and the
Here, we summarize the impact we expect our recommendations tobus through which it communicates with the CPU. As shown in Sec-
have on SEA application performance. First, the improved memory tion 4, the TPM is a major bottleneck for efficient SEA applications
isolation of PAL state allows truly concurrent execution of secure on current hardware. Increasing the TPM's speed could potentially
and legacy code, even on multicore systems. Thus, PAL execution noreduce the cost of using the TPM to protect PAL state during a con-
longer requires the entire system to grind to a halt. text switch, and similarly reduce the penalty of usBgINIT dur-

With SEA on existing hardware, a PAL yields by simply transfer- ing every context switch. However, achieving sub-microsecond over
ring control back to the untrusted OS. Resume is achieved by exe-head comparable to our recommendations would require significant
cuting late launch again. It is the responsibility of the PAL to protect hardware engineering of the TPM, since many of its operations use a
its own state before yielding, and to reconstruct the necessary state2048-bit RSA keypair. Even with hardware support to make the oper-
from its inputs upon resume. Protecting state requires the use of theations performant, the power consumed by such operations is waste-
TPM Seal and Unseal commands. 8KINIT on AMD hardware can ful, since we can achieve similar or superior performance with our
take up to 177.52 ms (Table 1), while Seal requires 20-500 ms andless power-intensive modifications.

5.7 Expected Impact



6. Extensions IBM developed the rHype research hypervisor and subsequently
We discuss issues that our recommendations do not address, but th&tPP!ied their security technology to the sHype hypervisor security
may be desirable in future systems. architecture [18]. Their goal is to implement mandatory access con-
trols at the hypervisor level. While compelling, their implementation
Multicore PALs. As presented, we offer no mechanism for allocat- is built for Xen [5], which consists of tens of thousands of lines of
ing more than one CPU to a single PAL. First, it should be noted code for the hypervisor [15], not to mention the complete Linux ker-
that a single application-level function that will benefit from multi- nel running in the privileged domain 0.
core PALs can be implemented as multiple single-CPU PALs. How-
ever, applications that require frequent communication between code
running on different CPUs (e.g., for locks) may suffer from PAL
launch, termination and context switching overheads. To address this
a mechanism is needed to join a CPU to an existing PAL. The join op-
eration serves to add the new CPU to the memory controller’s acces
control table for the PAL’s pages.

Protecting the TCB. New hardware architectures and security co-
processors [26] have been proposed to address security problems

(e.g., XOM [14], AEGIS [23], and the IBM 4758 coprocessor [7])

‘Unfortunately, the cost of widespread deployment of these technolo-

gies has proven to be prohibitive. We have focused on recommending
changes that provide strong security and performance with a mini-
mum amount of effort.

sePCR Sets. As presented, we propose a one-to-one relationship

between sePCRs and PALs. It is a straightforward extension to group8. Conclusions

zgigﬁgr:gt?hz?;cigztbgnd :espc—gsf ass(,e F;ﬁzsrgtgn? :rfth V’;ﬁl‘n (;E:je t-gpl')ve\Ne have e_xplored the extent to which today’s_latest comquity pro-
modified appropriately. Some will be indexed by the sePCR set itself gz;z?lrssvmu Zuﬁﬁr?irr;grﬁégcwgnh?v%d%udnej'%gﬁ;gaprg\g?fgrﬁ]p%“_
(e.g.,SLAUNCHwill need to cause all sePCRs in a set to reset), some : y 9

by subse f e sePCRs  ase (., TPM Quate). and ahers 2 "2ke Tl 0B eoce excuton possie, However, he o
the individual sePCRs inside a set (e.g., TPM Extend). p P Y P Y ’
We have recommended changes to the CPU, memory controller, and

PAL Interrupt Handling. As presented, interrupts are disabled on TPM that alleviate today's dependence on computationally expensive
the CPU executing a PAL (expiry of the preemption timer does not TPM operations to protect application state during context switches,
cause a software-observable interrupt to the PAL). We believe that aand that allow concurrent execution of secure and insecure code. If
PAL’s purpose should be to perform an application-specific security- these changes are implemented, application developers will finally
sensitive operation. As such, we recommend that a PAL not accepthave the opportunity to write secure applications without relying on
interrupts. However, there may still be situations where it is necessarythe security of layer upon layer of legacy software, and without break-
to receive an interrupt, e.g., in future systems where a PAL requires ing compatibility with today’s commodity systems.

human input from the keyboard. Thus, a PAL should be able to con-

figure an Interrupt Descriptor Table to receive interrupts. However, 9, Acknowledgments

this may result in the PAL receiving extraneous interrupts. Routing
only the interrupts the PAL is interested in requires the CPU to re-
program the interrupt routing logic every time a PAL is scheduled,
which may create undesirable overhead or design complexity.
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A. Acronyms Used

This table summarizes the acronyms used in this paper.

Acro. Expansion Def.

TCB Trusted Computing Base Sec. 1
SEA Secure Execution Architecture Sec. 1
TPM Trusted Platform Module Sec.2.1
PCR Platform Configuration Register | Sec. 2.1.1
SVM AMD Secure Virtual Machine Sec.2.2
TXT Intel Trusted Execution Technology Sec. 2.2
SLB Secure Loader Block Sec.2.2.1
PAL Piece of Application Logic Sec.3.1
SECB | Secure Execution Control Block | Sec.5.1
sePCR| Secure Execution PCR Sec.5.4




