
Seeing-Is-Believing:
Using Camera Phones for Human-Verifiable Authentication ∗

Jonathan M. McCune Adrian Perrig Michael K. Reiter
Carnegie Mellon University

{jonmccune, perrig, reiter}@cmu.edu

Abstract

Current mechanisms for authenticating communica-
tion between devices that share no prior context are in-
convenient for ordinary users, without the assistance of
a trusted authority. We present and analyze Seeing-Is-
Believing, a system that utilizes 2D barcodes and camera-
phones to implement a visual channel for authentica-
tion and demonstrative identification of devices. We ap-
ply this visual channel to several problems in computer
security, including authenticated key exchange between
devices that share no prior context, establishment of a
trusted path for configuration of a TCG-compliant com-
puting platform, and secure device configuration in the
context of a smart home.

1. Introduction

Obtaining authenticated values from devices in ways
that are easily understandable by non-expert users is cur-
rently an open problem. This is best exemplified by the
problem a user faces when she wants to securely connect
her wireless device to that other device (e.g., a network
printer, an 802.11 base station, or another wireless de-
vice). In general, it is exceedingly difficult to determine
which device is at the other end of a wireless connection
without out-of-band knowledge. Balfanz et al. describe
this as the problem of achieving demonstrative identifi-
cation of communicating devices [4]. We approach this
problem with the premise that, in many situations, a user
can visually identify the desired device.

∗This research was supported in part by National Science Founda-
tion grant number CNS-0433540, U.S. Army Research Office contract
number DAAD19-02-1-0389, and by gifts from Bosch and Intel. The
views and conclusions contained here are those of the authors and should
not be interpreted as necessarily representing the official policies or en-
dorsements, either express or implied, of ARO, Bosch, Carnegie Mellon
University, Intel, NSF, or the U.S. Government or any of its agencies.

As camera-equipped mobile phones rapidly approach
ubiquity, these devices become a naturally convenient
platform for security applications that can be deployed
quickly and easily to millions of users. Today’s mo-
bile phones increasingly feature Internet access and come
equipped with cameras, high-quality displays, and short-
range Bluetooth wireless radios. They are powerful
enough to perform secure public key cryptographic op-
erations in under one second.

We propose to use the camera on a mobile phone as
a new visual channel to achieve demonstrative identifica-
tion of communicating devices formerly unattainable in an
intuitive way. We term this approach Seeing-Is-Believing
(SiB). In SiB, one device uses its camera to take a snapshot
of a barcode encoding cryptographic material identifying,
e.g., the public key of another device. We term this a vi-
sual channel. Barcodes can be pre-configured and printed
on labels attached to devices, or they can be generated on-
demand and shown on a device’s display.

We apply this visual channel to several problems in
computer security. SiB can be used to bootstrap authen-
ticated key exchange between devices that share no prior
context, including such devices as mobile phones, wire-
less access points, and public printers. We use SiB to aid
in the establishment of a trusted path for configuration of a
TCG-compliant1 computing platform, and to provide the
user with assurance in the integrity of an application run-
ning on a TCG-compliant computing platform. We also
use SiB to secure device configuration in the context of a
smart home.
Outline We survey related work in Section 2 and provide
an overview of SiB in Section 3. Section 4 presents the
use of SiB for authenticated key exchange between mo-
bile devices. Section 5 explains how to use SiB to achieve
demonstrative identification of, and secure connection
to, a particular wireless device, with establishment of a

1The Trusted Computing Group (TCG) is an organization that
promotes open standards to strengthen computing platforms against
software-based attacks [2, 3].

trusted path from the user to a TCG-compliant computing
platform as a special case. Leveraging a TCG-compliant
computing platform, Section 6 shows how SiB can help
verify that a particular application currently “owns” the
computing platform’s display, and provide high assur-
ance that the integrity of that application is maintained.
We also show in Section 7 how this technology can be
used to achieve slightly weaker—but still quite valuable—
security properties in the context of, e.g., a smart home.
Our implementation is detailed in Section 8, with a secu-
rity analysis in Section 9. Section 10 concludes.

2. Related Work

SiB is closely related to work on authentication in-
volving mobile devices, barcode scanning with camera
phones, and using mobile phones as trusted intermedi-
aries.

2.1. Authentication

In this section, we study authentication between two
co-located entities with no prior trust relationships. Since
using a public key infrastructure relies on the existence of
trusted certifiers (e.g., hierarchical certification [23] or un-
structured certification [52]), we do not consider these ap-
proaches here. Similarly, trusted third party approaches,
such as Kerberos [31, 42], assume an online trusted au-
thority which may not exist in our setting.

A common mechanism to establish a secure chan-
nel between two entities is to use Diffie-Hellman key
establishment [12]. Unfortunately, a man-in-the-middle
(MITM) attack is possible if the two entities do not share
any established trusted information. Bellovin and Mer-
rit propose the encrypted key exchange (EKE) protocol,
which prevents the MITM attack if both parties share a
secret password [6]. Several researchers have refined this
approach [6, 7, 8, 28, 51], but they all require a shared
secret password between the two entities, which may be
cumbersome to establish in many mobile settings.

Another approach to defeat the MITM attack is to use
a secondary channel to verify that the same key is shared
by two parties. An approach that several researchers have
considered is that a human can manually verify that the
generated keys are identical. Since comparing the hashes
of the two keys is cumbersome, researchers have devised
visual metaphors that represent the hash to make it easier
for people to perform the comparison: Levien and Gold-
berg devise the Snowflake mechanism [16, 27], Perrig and
Song propose to use Random Art as a visual hash [32], and
Dohrmann and Ellison propose a colorful flag represent-
ing a hash of the key [13]. Though these schemes make

key comparison easier for the user, they still rely on the
user to diligently compare the resulting visual key repre-
sentations. With SiB, visual device identification is an in-
tegral part of establishing a connection between devices,
though in a far less overt way.

To defend against MITM attacks, Stajano and Ander-
son propose to set up keys through a link that is created
through physical contact [41]. However, in many settings,
devices may not have interfaces that connect for this pur-
pose, or they may be too bulky to carry around. Balfanz
et al. extend this approach to use short-range wireless in-
frared communication [4]. Of all these approaches, theirs
is the most closely related to SiB, and we discuss it in
more detail in Section 3.3. Čapkun, Hubaux, and Buttyán
have further extended this research direction [48]. They
make use of one-hop transitive trust to enable two nodes
that have never met to establish a key. SiB could leverage
this technique equally well.

Researchers have studied the problem where a user
wants assurance that what she sees on the screen of a
computer is really the content sent from a trusted provider
or displayed by a trusted application. Tygar and Whitten
consider Trojan horse web applications that may be able
to monitor keystrokes and steal private information [46].
They combat this problem using window personalization.
This is best described as a heuristic and does not provide
cryptographic security guarantees. Ye and Smith propose
trusted paths from web browsers to users. Their solution
is based on window borders that flash in a particular way,
such that malicious content or a malicious application is
unable to easily match the correct pattern. This solution
provides no cryptographic guarantees, and we believe it
requires substantial user diligence. We discuss the use of
SiB to address these problems in Section 6.

2.2. Barcode Recognition with Camera Phones

SiB depends on a camera phone having the ability to
use its camera to recognize two-dimensional (2D) bar-
codes. Several projects exist that seek to allow camera-
equipped mobile phones to interact with physical objects
through the use of 2D barcodes. Rohs and Gfeller de-
velop their own 2D code explicitly for use with mobile
phones, emphasizing their ability to be read from elec-
tronic screens and printed paper [34]. Woodside develops
semacodes, which is an implementation of the Data Ma-
trix barcode standard for mobile phones [36, 49]. Wood-
side considers the primary application of semacodes as
containers for a URL which contains information about
the physical location where the barcode was installed.
Madhavapeddy et al. use SpotCodes to enhance human-
computer interaction by using a camera-phone as a point-
ing and selection device [29]. Researchers working on the

CoolTown project at HP Labs propose tagging electron-
ics around the house with barcodes to be read by camera
phones or PDAs so that additional data about the tagged
device can be easily retrieved [1].

Hanna considers devices with barcodes affixed to aid
in the establishment of security parameters [18]. His work
considers a smart home, where a user may want to estab-
lish a security context for controlling appliances or other
devices in a smart-home. In Hanna’s work, the barcode
contains a secret which is also stored inside the device.
Hanna proposes using this secret to enable the secure
transmission of commands to the device from a master
controller over an untrusted network. We refer to the se-
curity property discussed by Hanna as presence, where it
is desirable that only users or devices close to some device
are able to control it. We discuss the notion of presence
further in Section 7.

2.3. Mobile Phones as Trusted Intermediaries

Burnside et al. explore the possibility of using cameras
to authenticate screen contents on an untrusted computer
so that a user can securely interact with a remote trusted
computer [9]. They require the user to position a camera
such that it does not move relative to the screen being au-
thenticated and then perform a pixel-mapping calibration
step. Upon completion of setup, the camera-equipped ver-
ifying device must constantly process the screen contents
on the untrusted device. They also require the camera-
equipped verifying device to communicate with a user-
specific proxy. In contrast, SiB is a lightweight solution,
capable of running on mobile phones.

Wu et al. propose the use of mobile phones to en-
able secure web authentication from an untrusted termi-
nal [50]. They utilize a trusted proxy to manage user
passwords and authentication data, preventing long-term
authenticators (e.g., cookies) from ever touching the un-
trusted terminal. Gieseke and McLaughlin extend this
work, improving communication speed and using a keyed
hash to authenticate the security proxy server and the mo-
bile client [15].

Ross et al. develop rule-driven transformation func-
tions that enable access to Internet services from multiple
kinds of devices, including mobile phones [35]. They con-
sider rules that enhance security when working from an
untrusted kiosk, making it unnecessary for the user to en-
ter sensitive information (such as credit card numbers and
mailing addresses). This scheme requires manual config-
uration for each Internet service and user device type.

SiB enhances security for the user interacting with the
computer in front of her, and is complementary to the tech-
niques of Wu et al. and Ross et al.

3. Seeing-Is-Believing (SiB)

With SiB, a mobile phone’s integrated camera serves
as a visual channel to provide demonstrative identifica-
tion of the communicating devices to the user. By demon-
strative identification, we mean the property that the user
is sure her device is communicating with that other de-
vice. In SiB, the user identifies that other device visually.
This serves to strongly authenticate one or both devices
since the user knows precisely which devices are com-
municating. Thus, SiB bootstraps secure communication,
provides demonstrative identification of the device from
which data originates, and captures user intentions in an
intuitive way. What better way for a user to tell device A

that it should communicate securely with device B than
to take a picture of device B using device A’s integrated
camera?

In the remainder of this section, we detail the physical
realization of the visual channel with 2D barcodes. Dis-
cussion of the visual channel’s resilience against active at-
tacks follows. The use of the visual channel to bootstrap
secure communication is then illustrated with a specific
example. We end this section with a discussion on us-
ing SiB with devices that may be lacking a display or a
camera, or both. Sections 4, 5, and 6 then provide de-
tailed usage scenarios for the demonstrative identification
provided by SiB. In Section 7, we move on to discuss a
weaker—though still valuable—property that can be pro-
vided by the visual channel, which we term presence.

3.1. 2D Barcodes as a Visual Channel

We implement the visual channel with a 2D barcode
(e.g., Data Matrix [36], PDF417 [43], or MaxiCode [47]),
displayed on or affixed to one device and captured by an-
other with its digital camera. When a user executes the
SiB protocol, she must aim the camera of her mobile de-
vice at a barcode on another device (either displayed elec-
tronically or affixed to the device’s housing). The act of
aiming the camera at the desired device results in demon-
strative identification of the targeted device.

We now present a more detailed example of the use of
SiB. Suppose Alice and Bob want to set up a secure chan-
nel between their camera phones. Alice’s phone generates
a 2D barcode encoding appropriate public cryptographic
material and displays it on its screen, while Bob uses his
phone’s digital camera to take a snapshot of Alice’s screen
displaying the barcode. Bob must watch his phone’s LCD,
acting as viewfinder, updating in real time in response to
his positioning of his camera-phone. A barcode recogni-
tion algorithm processes each image in the viewfinder in
real time and overlays a colored rectangle around success-

fully recognized barcodes. When Bob presses the shut-
ter button, the viewfinding process stops and the barcode
recognition algorithm returns the data represented by the
barcode. Section 8 presents further details of our imple-
mentation.

3.2. Attacking the Visual Channel

Active attacks are extremely difficult to perform
against the visual channel without being detected by the
user. The user has in mind the device at which she is
aiming her camera, and will be conscious of a mistake
if she takes a snapshot of anything else. We believe
the act of taking a picture of that device—the one with
which the user wants to communicate securely—is intu-
itive, and should therefore enjoy a low rate of operator er-
ror. Thus, the visual channel has the property of being re-
silient against active attacks (such as a man-in-the-middle
attack), and the property that active attacks are easily de-
tected by the user, who can then terminate wireless com-
munication. It is ideal for authentication, providing the
user with demonstrative identification of the communicat-
ing devices without burdening the user with device names
or certificate management. We compare SiB to alternative
means for authenticating devices in Section 9.2.

3.3. Pre-Authentication and the Visual Channel

We build on work by Balfanz et al. [4], and Stajano
and Anderson [41], to secure wireless communication by
leveraging the visual channel for authentication. We adopt
the term pre-authentication, as Balfanz et al. suggest [4],
to describe the data exchanged on the visual channel. Pre-
authentication data is later used to authenticate one or
both of the communicating parties in almost any standard
public-key communication protocol over the wireless link.
Eavesdropping on the visual channel gives no advantage
to an attacker, provided that the underlying cryptographic
primitives are secure, and that the mobile devices them-
selves have not been compromised.

Balfanz et al. discuss the use of infrared communica-
tion as a “secure side-channel” for pre-authentication be-
tween mobile devices [4]. They focus on the property that
infrared is a “location-limited channel,” emphasizing the
difficulty an attacker faces in trying to interfere with the
channel, because he must be in close physical proximity
to the communicating devices. The primary advantage of
SiB is that it uses a visual channel instead of an invisible
channel, thus adding a direct human factor. We acknowl-
edge that attacks against infrared are difficult to perform,
but we believe that the inability of the user to actually see
which devices are communicating provides dangerous op-
portunities to an attacker.

Figure 1 shows the pre-authentication phase of SiB,
carried out over the visual channel. Provided that the mo-
bile phone has not been compromised, and that the visual
channel and relevant cryptographic primitives are secure
against active adversaries (Section 9 presents a detailed
security analysis), authentication in SiB requires merely
that the user confirm her camera is pointed at the intended
device.

3.4. Device Configurations

The concepts of SiB can be applied in different ways
to devices with different capabilities, each equipped with
either a camera and display, a camera only, a display only,
or neither. In some cases, these device configurations im-
pose some limitations on the strength of the achievable
security properties. Figure 2 contains a summary of these
properties.

The most flexible configuration for SiB is when both
devices have both a camera and a display—these have a
CD in their column or row heading in Figure 2. These
devices can be mutually authenticated, since both possess
cameras. Further, each device can make use of either a
long-term public key or an ephemeral public key in each
exchange, since barcodes containing keys are displayed
on an electronic screen (as opposed to paper or some other
fixed medium).

We refer to devices equipped with no display—devices
which have no D in their column or row heading in Fig-
ure 2—as “displayless” devices. These devices can be au-
thenticated with a long-term public key. A barcode encod-
ing a commitment to the key, or multiple barcodes encod-
ing the key itself, must be affixed to the device’s housing
(e.g., in the form of a sticker). The issue of whether to use
a commitment to a key, or the key itself, is addressed in
Section 5.

Entries in Figure 2 marked presence indicate that
demonstrative identification of communicating devices is
unattainable, but a property we term presence is still
achievable. Presence refers to the ability to demonstrate
that a device is in view of someone. We describe this prop-
erty in more detail in Section 7.

4. Bidirectional Authentication

Providing mutual authentication between mobile de-
vices that share no prior context is a difficult problem.
In this section, we show how SiB can be used to intu-
itively capture user intentions and establish a mutually au-
thenticated security context between precisely the devices
the user wants, without a trusted authority. Examples of
the established security context include authenticated ex-

A B

1 hA ← hash(KA)

2
hA

−→
(visual)

3
KA

−→
(other)

h
′
← hash(KA)

4
if h′ 6=hA

then abort

Figure 1. Pre-authentication over the visual
channel. KA is A’s public key, which can
be either long-term or ephemeral, depend-
ing on the protocol.

Y
CD C D N

CD X X
∗

X X
∗

X C X X
∗

X X
∗

D presence presence × ×

N × × × ×

Legend
X Strong authentication possible
X

∗ Barcode label required on housing
presence Confirm presence only
× No authentication possible

Figure 2. Can a device of type X authenticate
a device of type Y? We consider devices with
cameras and displays (CD), cameras only
(C), displays only (D), and neither (N).

change of public keys, and authenticated Diffie-Hellman
key exchange to establish a shared secret. The device
combinations we consider in this section are those where
both devices have cameras.

We now walk through the use of SiB, beginning with
device discovery and barcode generation. Next, we de-
scribe pre-authentication and bootstrapping a well-known
public key protocol. Then, we describe options to satisfy
different security requirements and project the likely per-

formance of SiB on emerging mobile phones.
The SiB protocol begins when Alice and Bob decide

they want to communicate securely. Alice’s device first
discovers nearby devices using its wireless interface. Al-
ice then selects the device she believes to be Bob’s (this is
easily achieved with “friendly names” common to, e.g.,
Bluetooth [17]). Bob’s device is listening when Alice
makes a connection attempt.

Each user computes a commitment to their public key
material and generates a barcode encoding this commit-
ment. This key material can take the form of a user’s long-
term public key, or it can be an ephemeral key for use in
only one key exchange. One practical example of this key
material is a self-signed public key certificate extended
with additional information about the key owner (e.g.,
name, email address, etc., similar to a vCard [10, 20]).
The decision regarding what form of public key material
to use is orthogonal to the authentication provided by SiB.

The pre-authentication phase now begins. The users
take turns displaying and taking snapshots of their respec-
tive barcodes. The order is not important, but it is neces-
sary that Alice capture the barcode commitment to Bob’s
public key, and that Bob capture the barcode commitment
to Alice’s public key. This pre-authentication protocol is
secure as long as an attacker cannot find a second preim-
age for the commitment function, and is unable to perform
an active attack on the visual channel.

After pre-authentication is complete, both devices now
hold commitments to the other device’s public key, and the
devices can exchange public keys over the wireless link.
The devices then perform the same commitment function
over the other device’s public key, ensuring that the result
matches the commitment that was received over the vi-
sual channel. At this point, the devices have mutually au-
thenticated one another’s public keys, and Alice and Bob
have demonstrative identification that the devices in their
hands are the ones that are communicating. These authen-
ticated public keys can then be used appropriately in any
well-known public key protocol on the wireless link (e.g.,
IKE [19], SSL/TLS [11, 14]). It is imperative that the
chosen established protocol verifies that each party does
in fact hold the private key corresponding to their authen-
ticated public keys.

The main contribution of SiB is the authentication pro-
vided by having demonstrative identification of the com-
municating devices. The selection of the well-known pub-
lic key protocol is flexible. If a user desires to avoid
transmitting a public key on the wireless network—so
that eavesdroppers cannot ascertain which devices are
communicating—the public key material can be encoded
in a sequence of barcodes. The key is thereby obtained
without transmitting it on the wireless medium, while re-

taining the demonstrative identification property with re-
spect to the device originating the key. It is then advisable
that the standard public key protocol that is used with SiB
authentication is key-private [5].

As the processing and display capabilities of mobile
phones improve, visual channel bandwidth will improve
sufficiently for data transmitted over the visual channel to
include network addresses for the relevant wireless inter-
faces (e.g., Bluetooth, 802.11) in addition to authentica-
tion data. This is more convenient for the user, since she
never has to wait for discovery of neighboring devices or
select a device from a list. Madhavapeddy et al. use bar-
codes on camera phones to improve the Bluetooth device
discovery process [30].

5. Unidirectional Authentication

We now discuss entries from Figure 2 where the device
of type X (the authenticator) is equipped with a camera,
and the device of type Y (the device being authenticated)
lacks a display and a camera. It is this presence of a cam-
era on the authenticator, and lack of a display and a camera
on the device being authenticated, that are responsible for
the security properties of this particular device combina-
tion. We refer to a device of type X as camera-equipped,
and a device of type Y as displayless.

Displayless devices do not have the ability to display
newly generated values. Still, a camera-equipped device
can authenticate displayless devices and establish secure
communication channels. The displayless device must
be equipped with a public/private keypair, and a sticker
containing a barcode of a commitment to its public key
must be affixed to its housing. Since the displayless de-
vice is constrained to the use of a single public/private
key pair for its entire lifetime, the option to generate per-
interaction public keys no longer applies. Of course, de-
vices can be reprogrammed and new stickers affixed, but
we consider that to be a significant maintenance task. As
in Section 4, there are privacy issues with using fixed pub-
lic keys that might be of concern.

We now introduce several practical examples where
unidirectional authentication with SiB is useful. We first
discuss connection to a wireless access point, and then de-
scribe securing the use of a printer in a public place. Fi-
nally, establishment of a trusted path for configuration of
the Trusted Platform Module (TPM) in a TCG-compliant
computing platform is considered.2 A full discussion of
the TCG specification is beyond the scope of this paper,

2The TCG specifies a Trusted Platform Module (TPM) that can be
used to enhance the security of computing platforms against software
attacks [2, 3]. The TPM is a chip connected to a computer’s processor,
with no other I/O capabilities.

though we summarize relevant concepts here as necessary.

5.1. Practical Applications

An 802.11 access point (AP) is one example of a
class of devices where “sticker-based” authentication may
be desirable. Camera-enabled devices can authenticate
the AP, enabling the establishment of a secure link-level
connection from the camera-enabled device to the AP.
This solution enables deployment of wireless connectivity
in environments where security policies require physical
presence for network access. Figure 3 shows the SiB ap-
plication on a mobile phone scanning a barcode installed
on a wireless access point.

Another commonly considered application where
demonstrative identification of communicating devices is
desirable is when using a printer in a public place. Similar
to the wireless access point, the printer can have a barcode
affixed to its housing so that a user can use SiB to authenti-
cate wireless communication with the printer/print server
and bootstrap establishment of a secure connection. Se-
cure communication is important here not only to ensure
the secrecy of the printed document, but to protect the
user’s computer from malicious software that masquer-
ades as a printer driver.

Figure 3. Phone running SiB scanning a bar-
code on an 802.11 access point.

5.2. Establishing a Trusted Path for Configuration
of a TPM

In this section we motivate the establishment of a
trusted path to configure the TPM in a TCG-compliant

computing platform and then describe how SiB can be
used to establish the trusted path. Today many comput-
ing platforms are plagued by “spyware” that may capture
users’ actions, including keystrokes, potentially exposing
sensitive information like passwords and credit card num-
bers [39]. So far, we have assumed that users’ devices are
uncompromised. In this section, we relax this assumption
with respect to the software running on a TCG-compliant
computing platform, and discuss ways that SiB can aid in
the establishment of a trusted path to configure a TPM.

One challenge in designing systems which incorporate
a TPM is how a user can communicate securely with the
TPM; the user has only a keyboard and display to com-
municate with the TPM, with untrusted operating sys-
tem and window manager software in between. A TPM
is configured—typically by a user or vendor—with a se-
cret, the Owner Authorization Data (OAD), which can be
used to exercise control over the TPM. A malicious party
that captures the OAD (using, e.g., spyware) can change
the OAD, delete (and in some instances change) applica-
tion secrets in secure storage, and disable or enable TPM
features at undesirable times. Unfortunately, in a TCG-
compliant computing platform, if certain TPM features
are disabled, a user has no way of knowing if malicious
software is running and, e.g., logging all keystrokes. This
is a serious problem if the user types the OAD while try-
ing to configure the TPM—the malicious software has just
captured the OAD.

Thus, it is undesirable to use the keyboard and display
of a computing platform to configure the TPM for fear
of malicious software running on the computing platform
that can steal the OAD. In the remainder of this section,
we show how authentication achievable with SiB enables
the user to use her camera phone to send commands to the
TPM, achieving secrecy so that a malicious application is
unable to capture the OAD even if it has subverted the
keyboard and display.

We propose the use of a camera phone to securely con-
figure the TPM, where the user enters the OAD only on
the camera phone. The TCG specifies that each TPM
come equipped with a public / private endorsement key-
pair. The public endorsement key is used for encrypting
commands to the TPM, and the private endorsement key
is used exclusively for their decryption (it is never used
to, e.g., compute a digital signature). Using SiB, the cam-
era phone can authenticate a TPM’s public endorsement
key, and bootstrap secure communication with the TPM
through which the user can enter the OAD and reconfig-
ure the TPM as desired.

To enable TPM reconfiguration from a camera phone, a
sticker must be installed on the case of the computing plat-
form which contains either a barcode encoding a commit-

ment to the public endorsement key, or several barcodes
encoding the entire public endorsement key. In the case
of a commitment, the full endorsement key can be ob-
tained from the computing platform in an authenticated
way analogous to the wireless access point example ear-
lier in this section.

Note that an attacker with direct access to the com-
puting platform can subvert the TPM by physical means.
Thus, the use of SiB enhances security under the assump-
tion of software-only attacks, which represent the majority
of threats, and requires an attacker to have physical access
to the computing platform, ruling out all remote attacks.

6. Screen Ownership and Application In-
tegrity

In this section we consider the problem where a user
wants assurance that what she sees on the screen of a
TCG-compliant computing platform (e.g., a workstation
or laptop) is really the content displayed by a particu-
lar application, and that this application is the same one
used, e.g., last week—we want to determine that this ap-
plication owns the screen. We propose to use SiB in
conjunction with a TCG-compliant computing platform
(hereafter: computing platform) to assist in determining
whether the content displayed on a computing platform’s
screen truly originates from a particular application. In
the context of TCG, SiB helps the user establish trust in
the trusted computing platform in front of her. Our solu-
tion prevents a malicious application from impersonating
a legitimate application on the computing platform. For
example, the computing platform may have a virus that
tries to spoof a legitimate control panel application to get
the user to enter her password.

The TCG specifies that the TPM has Platform Config-
uration Registers (PCRs) that a properly instrumented op-
erating system extends with hash values computed over
all software that is loaded for execution [45]. The pur-
pose of the PCRs is to enable the TPM to digitally sign
attestations that a particular software configuration has
been loaded. The OS must also store history informa-
tion that provides additional information about a comput-
ing platform’s configuration (code or relevant computing
platform-specific information that has been reported to a
computing platform’s TPM) to a requesting entity referred
to as a challenger. This history information is managed
by the Trusted Platform Support Service (TSS), generally
a piece of the OS, that need not be trusted because the his-
tory information can be validated using the PCR values.
We leverage these properties of a TCG-compliant comput-
ing platform to demonstrate screen ownership with SiB.

We include a brief note on terminology. The TPM is

a passive component, so application-level commands do
not actually get sent to the TPM—they are interpreted by
a piece of trusted software that can be attested to, usually
a module in the operating system, which is distinct from
the TSS. This trusted software translates the application-
level commands into TPM hardware instructions. Subse-
quently, when we say the user sends a command “to the
TPM,” we mean that it is sent to this special OS mod-
ule, and, if necessary, the TPM can be used in an at-
testation that the OS module has not been modified. A
TCG-compliant computing platform requires OS support
as well as a physical TPM, and we refer the interested
reader to [3] for more information.

6.1. Windowing System Requirements

Several prerequisites must be met to verify that the de-
sired application actually owns the screen. The operat-
ing system and the windowing system (i.e., the window
manager) must be designed such that they can enforce
the condition that the desired application’s window can
be put into an “always-on-top” mode. The application
must be notified by the windowing system that it is in this
mode, and the application must be subsequently notified
if the windowing system takes the application out of the
“always-on-top” mode before being requested to do so by
the application. In today’s popular windowing systems,
notification events of this nature may be dropped if the
system is under heavy load. It is imperative for the se-
curity of this verification protocol that these notification
events are guaranteed to arrive.

The window manager must be able to prevent other ap-
plications from reading the contents of the screen where
the user’s desired application is “always-on-top.” This
includes such cases as taking screenshots and copy-and-
paste operations. All pixels displayed by the user’s desired
application when it is in “always-on-top” mode must be
inaccessible by any other application. Shapiro et al. have
taken a step towards achieving the necessary properties
with the EROS trusted window system [40].

We achieve through demonstration of screen ownership
the property that the integrity of a particular application
can be verified. For example, we can verify that the cur-
rent application is, e.g., the same application we were us-
ing last week. This is different from the property of con-
firming that the current application is, e.g., precisely the
application purchased from a particular software vendor.
The techniques described below can easily be extended
to achieve such a property, however, additional vendor-
specific configuration is necessary on the user’s camera
phone.

In this approach, the user’s application need not be
certified. The spirit of operation is similar to that of a

common SSH session—upon first connection keys are ex-
changed under the assumption that an attack is highly un-
likely. If this assumption holds, then all subsequent con-
nections are secure.

6.2. Initial Configuration

We now describe the basic operation of SiB on a
TCG-compliant computing platform in two parts—the ini-
tial configuration, and subsequent verifications. We omit
many details for brevity (again, we refer the interested
reader to the relevant chapters of [3]).

We explain the initial configuration under the assump-
tion that there are no software attacks in progress on the
computing platform being configured. SiB does not re-
quire the wireless network to be secure. We assume the
user has already established a secure channel to the TPM
via Bluetooth, as Section 5.2 explains. The user then
elects to measure an initial configuration of the on-top ap-
plication on the computing platform by selecting the ap-
propriate menu item on her mobile phone. Upon reception
of the command to measure an initial configuration of the
active application in the TPM-controlling piece of the OS,
the following occurs:

1. The window manager temporarily locks out other ap-
plications, and ensures that the active application re-
mains “always-on-top” for the duration of the pro-
tocol. The “always-on-top” mode must meet the re-
quirements detailed in Section 6.1. This is to ensure
that the user is not confused concerning the applica-
tion with which she is interacting.

2. The TPM allocates a new secure key object and
generates a new public / private signing key-pair
(Kverify , K−1

verify) to be used in subsequent verifica-
tions of the active application. This key is “wrapped”
by the TPM and bound to the current values of the
PCR registers for the OS, window manager, and ac-
tive application [45]. The appropriate history infor-
mation from the TSS must also be collected.

3. The application being configured for future verifica-
tion uses SiB to generate and display a barcode com-
mitment to the public Kverify . The public key is
sent to the user’s mobile phone, along with appro-
priate validation data (digitally signed with the new
K−1

verify) constructed from the current values of the
PCR registers and the relevant history information.
Meta-data should also be sent to the user’s mobile
phone such that the user can easily select the cor-
rect application for performing subsequent verifica-
tions. The user authenticates the public key using the

barcode displayed onscreen with SiB, i.e., by pho-
tographing the barcode with her camera phone as in
Section 5.

6.3. Subsequent Verification

We leverage the ability of the TPM to conditionally al-
low the use of a wrapped key [3]. The condition is that
the appropriate PCR registers contain the same values that
they did upon initial configuration. That is, the same op-
erating system, window manager, and application are run-
ning now that were running during initial configuration.
The details of this key release procedure involve TCG-
specific OS capabilities for handling the history informa-
tion in response to challenges, which we omit here.

To verify an application, the user selects verification
of the appropriate entry from a list of applications on her
mobile phone (an entry is added to this list during each
initial configuration, we omit the details for brevity). The
verification then proceeds as follows:

1. The phone generates a cryptographically secure
nonce, nonce, and sends it via Bluetooth to the de-
sired application running on the computing platform.
This nonce serves as a cryptographic challenge to the
computing platform; it need not be kept secret.

2. We assume the nonce reaches some application. To
successfully complete this protocol, that application
must then sign the nonce using K−1

verify . Since the
TCG-compliant OS knows the state of the computing
platform, only the correct application will meet the
requirements for the TPM to perform the signature
(the appropriate PCR registers for the specified appli-
cation, window manager, and OS contain the values
recorded during the initial configuration).

3. If the correct values are present, the TCG-compliant
OS will then grant the application the privilege to use
the private verification key K−1

verify.

4. The TPM will then sign the challenge using the pri-
vate verification key on behalf of the application:
σ ← SignK

−1

verify
(nonce).

5. The application encodes σ in one or more barcodes
and displays those on the screen. Since the comput-
ing platform’s windowing system meets the require-
ments in Section 6.1, a malicious application running
on the computing platform will never be able to read
these barcodes.

6. The user uses the SiB component of the application
on her camera phone to capture this signature and

verify it with Kverify as obtained in the initial con-
figuration: VerifyKverify

(nonce, σ).

7. If the signature verifies, the user has assurance that
the application displayed on the screen of her com-
puting platform is precisely the same application that
was active when she performed the initial configura-
tion.

Note that malicious software executing on the comput-
ing platform being verified may be able to capture the
challenge, but it cannot access the TPM-protected private
key K−1

verify necessary to compute a valid signature. Upon
execution of the malicious software, the PCR values on
the computing platform change, eliminating the ability to
access K−1

verify . It is even possible to protect against vul-
nerabilities (e.g., buffer overflows) in the application it-
self. Sailer et al. detail an integrity measurement architec-
ture that provides such properties [38].

If either of the user’s mobile phone or computing plat-
form is not equipped with a Bluetooth interface, we can
still achieve strong security properties at the expense of
convenience for the user. The role of Bluetooth in the pro-
tocol is to deliver the cryptographic challenge to the TPM.
Without Bluetooth, the user must type the challenge—or
input it in some other way, such as with a camera attached
to the computer—displayed on her phone into the applica-
tion on her computer that currently owns the screen. The
verification protocol then proceeds as before from step 2.

7. Presence Confirmation

A display-only device (display-equipped and camera-
less) is unable to strongly authenticate other devices us-
ing SiB. Equipped with no camera, it makes no difference
whether the entity the cameraless device wants to authen-
ticate has a display, or makes use of a barcode sticker—the
cameraless device cannot “see” them. However, display-
only devices can obtain a property we refer to as presence
(see Figure 2). That is, it can confirm the presence of some
other device in line-of-sight with its display.

To detect the presence of a nearby device, the display-
only device generates a key K for a message authenti-
cation code (MAC), encodes it in a barcode, and dis-
plays that barcode, noting the time when it was first dis-
played. Any nearby devices that are able to see the
display and capture the barcode can send data to the
display along with a MAC computed over that data,
{data ,MAC (K, data)} → display − only device .

When the data and MAC arrive over the wireless chan-
nel, the display-only device knows that some device has
been in line-of-sight during the time since K was first dis-
played. We emphasize that this presence property is quite

weak—the display-only device has no way of knowing
how many devices can see its display, or whether the radio
signal is from the same device that is in line-of-sight with
its display. It can only verify the MAC it receives with
the data over the wireless channel, and it can measure the
delay between displaying the barcode and receiving the
MAC on the wireless channel.

Despite the weakness of the presence property, there
are still practical applications for devices capable of de-
termining presence. For instance, the presence property is
useful in the context of a smart home. It can restrict re-
mote control access on a television to users in the same
room. In general, it can serve to limit authority to control
a device to users located in view of that device.

Consider the establishment of a security context be-
tween a TV and a DVD player to secure wireless com-
munication between the two. The user can use SiB
to strongly authenticate the DVD player to her phone
through a barcode attached to the DVD player’s hous-
ing. She can then demonstrate the DVD player’s pres-
ence to the TV by sending it the public key of the DVD
player, along with a MAC over the DVD player’s public
key, {KDVD ,MAC (K, KDVD)} → TV .

The TV is then configured to establish a secure, au-
thenticated connection to the DVD player whenever the
user selects DVD player as the input source on the TV.
Taken one step further, the TV can add the DVD player to
its list of trusted devices, such that the TV will automati-
cally accept input from the DVD player whenever the user
inserts a DVD.

8. Implementation Details

8.1. Series 60 Phone Application

We built SiB in C++ such that it will run on mobile
phones running Symbian OS versions 6.1 and 7.0s with
the Nokia Series 60 User Interface. The size of the Sym-
bian Installation System (SIS) file [44] for SiB is only 35
kilobytes. This makes deployment feasible over even the
most constrained channels, such as GPRS [37].

The Nokia 6600 and 6620 served as our development
platforms. The barcode format and image processing al-
gorithm in our system is adapted from that of Rohs and
Gfeller [34]. The data contained in the barcodes for SiB is
augmented with Reed-Solomon error correcting codes to
provide better performance in the presence of errors in the
image processing [33]. We ported Karn’s implementation
of Reed-Solomon codes to Symbian OS [22].

In its current state, we use the SHA-1 cryptographic
hash function for all hashing operations [21]. All wireless
communication occurs via Bluetooth [17]. To enable users

to perform a key exchange between two camera phones,
we implemented ephemeral Diffie-Hellman key exchange
to establish a shared secret between the two devices [12],
as discussed in Section 4. This shared secret can be used to
establish an authenticated channel over the wireless data
link between the two devices, over which any desired in-
formation can be exchanged.

Since the Reed-Solomon codes embedded in the bar-
code indicate whether a processed code is valid or invalid,
and our application constantly decodes any barcodes in
the current camera scene, it is not strictly necessary for
the user to press a “shutter” button for the camera. Our
implementation is configurable so that the user may elect
whether she wishes to press a shutter button. When the
shutter button is disabled, the first valid image processed
can be used automatically. However, if the user is in an
environment where there are many barcodes, recognition
of the incorrect barcode will cause the SiB protocol to
abort. For particularly cautious users, who may be con-
cerned that automatic shutter control could cause the cam-
era to capture a barcode displayed by a malicious party on
another medium before the user aims the camera at the
desired barcode, manual control of the shutter is possible.

Figure 4 contains a photograph of SiB in action. Al-
ice’s Nokia 6620 (background), is displaying a barcode,
while Bob’s Nokia 6620 (foreground) is successfully de-
coding the data encoded in Alice’s phone’s barcode.
In bidirectional authentication with SiB, Alice and Bob
would then switch roles. Bob’s phone would display a
barcode, and Alice’s phone would decode it. Figure 5 con-
tains screen shots of the SiB application. In Figure 5(a),
the user is being prompted to select the desired Bluetooth
device for the key exchange. We emphasize that device
selection is for convenient establishment of the wireless
channel only, and is not a factor in the security of SiB.
Madhavapeddy et al. detail the encoding of Bluetooth net-
work addresses as barcodes displayed on mobile phones
to eliminate the Bluetooth discovery process [30]. Im-
plementation of SiB using a barcode with sufficient band-
width to encode a Bluetooth network address and a cryp-
tographically secure hash value can eliminate the manual
device selection process. Figure 5(b) shows the display
of one phone when it has successfully recognized the bar-
code displayed on the screen of another phone.

8.2. Barcode Reading Performance

In this section we evaluate the performance of our SiB
application on the Nokia 6600. We consider the length of
time required for SiB to mutually authenticate two mobile
phones and perform a Diffie-Hellman key exchange, as in
Section 4. We then provide insight into the practicality of
using multiple barcodes to encode a single logical item.

Figure 4. SiB application on a Nokia 6620
with one phone scanning the hash-barcode
on the LCD of another.

For example, a 1024 bit RSA key would need to be en-
coded in 16 barcodes in our current implementation—64
bits of key and 4 bits of place-marker in each barcode.

We performed timing analysis on our implementa-
tion of bidirectional authenticated Diffie-Hellman key ex-
change application (see Section 4) between two Nokia
6600s. We instrumented the application to track the length
of time between the establishment of the Bluetooth con-
nection and the successful completion of the Diffie Hell-
man key exchange. It is reasonable to ignore Bluetooth
device discovery since a commercially viable implemen-
tation should use a barcode format with sufficient band-
width (e.g., [36, 49]) to include the Bluetooth address of
the displaying device, rendering device discovery unnec-
essary. Over a series of 10 executions involving manual
aiming of the phones, we observed the average length of
time to establish a shared secret to be 8 seconds. The min-
imum and maximum times ranged between 6 and 10 sec-
onds, respectively. The processing time required by SiB is
roughly one second. The execution time of SiB is domi-
nated by the users aiming their cameras at the correct bar-
codes.

On the Nokia 6600, SiB is able to process two to three
barcode snapshots per second. We have successfully read
in excess of five barcodes from a single snapshot, for a
sustainable rate averaging 10 to 15 barcodes per second
under ordinary office lighting conditions (see Figure 6).

(a) Device selection.

(b) Barcode recognition.

Figure 5. Mobile phone screen shots show-
ing the SiB application in operation. In the
first screen shot, the user is being prompted
to select a device with which to initiate the
SiB protocol. In the second, the user sees
the phone at which she is aiming her cam-
era, with status markers indicating success-
ful barcode recognition.

Thus, we conclude that reading multiple barcodes for a
single logical item is a viable implementation strategy.

9. Security Analysis

In addition to the security of the underlying crypto-
graphic primitives, the security of SiB is based on the as-
sumption that an attacker is unable to perform an active
attack on the visual channel, and is unable to compromise
the mobile device itself. We first discuss the employed
cryptographic primitives, then the security properties of
various side-channels for authentication. Finally, we dis-
cuss the security properties of authentication using a vi-
sual channel.

Figure 6. Mobile phone screen shot show-
ing the SiB application recognizing multiple
barcodes displayed on an LCD screen.

9.1. Cryptography

As implemented, each barcode in SiB has a raw band-
width of 83 bits. 15 of these bits are dedicated to Reed-
Solomon error correcting codes, leaving the application
with 68 bits of hash for authentication. As discussed in
Section 4, the hash transmitted in the barcode needs to be
secure against active attacks, which we achieve through
the properties of the visual channel. However, if an adver-
sary can find a second pre-image of the value encoded in
the barcode, then a passive attack on the barcode coupled
with an active attack against the wireless network connec-
tion can be successful. As mobile phone cameras and dis-
plays increase in fidelity, the key itself can be encoded
in the barcode, eliminating this dependence on a crypto-
graphic hash function.

For a cryptographic system to be considered compu-
tationally secure today, at least 280 operations should be
required to break it [26]. When the barcode containing a
key’s digest takes the form of a sticker on the side of some
device, or gets displayed on a laptop or other relatively
large screen, it is not a problem to use multiple barcodes
to encode sufficient cryptographic material to be secure.
As detailed in Section 8.2, SiB is capable of reading mul-
tiple barcodes simultaneously.

However, in phone-to-phone key establishment, there
is only enough screen area to display a single barcode.
Thus, the 68 bits of hash data in our key exchange proto-
type are potentially vulnerable to cryptanalytic or brute-
force attack. However, this vulnerability is significant
only when the barcode represents a hash of a long-term
public key. We propose two methods for circumventing
this problem. The first simply involves the use of mul-
tiple barcodes to encode sufficiently many bits of hash,
displayed in sequence. The phones can synchronize the
displaying and reading via Bluetooth messages so that the
user is not inconvenienced by pressing buttons to iterate

through multiple barcodes. While effective, this technique
adds to the burden the user must face.

We propose a second technique which still achieves
strong security properties through the use of Diffie-
Hellman session keys. The devices participate in an
ephemeral Diffie-Hellman key exchange, using SiB to au-
thenticate their respective public contributions to the key.
This session key is then used to establish an authenticated
channel over which the devices may exchange all man-
ner of data. Once the DH session-key establishment is
complete, there is no advantage to finding a pre-image or
second pre-image of the hash function.

Even with today’s technology, computing 267 opera-
tions takes well over a few seconds, which is the length of
time DH key establishment using SiB for authentication
requires to execute. Once a session key is established, the
attacker gains nothing even if he compromises the hash.
In a commercially viable system, the barcode generator
and recognition algorithm should be extended to achieve
a useful data content of 80 bits or more. There are no ma-
jor technical obstacles preventing this extension.

9.2. Selecting an Authentication Channel

Mutual authentication between two parties without the
assistance of a trusted authority requires a channel that is
secure against active attacks, such as a man-in-the-middle
(MITM) attack. We analyze potential channels based on
the degree to which the user’s intentions are captured, and
the amount of feedback that the channel provides to the
user. Figure 7 contains a summary of proposed channels
and their characteristics.

Activity on channels such as infrared, ultrasound, or ra-
dio is undetectable to humans without specialized equip-
ment. Therefore, if Alice believes her device is communi-
cating with Bob’s device via infrared, the only assurance
she has that it is actually doing so is through status indica-
tors on the two devices. She cannot see infrared radiation
leaving her device and entering Bob’s, and she certainly
cannot see an attacker’s device outputting interference pat-
terns and affecting the data stream. Similarly, in case of
ultrasound and radio, Alice and Bob need to rely on sta-
tus indicators of their devices, but they are not sure that
Alice’s device is indeed setting up a key with Bob’s de-
vice. Thus, the users’ intentions are not captured well, and
feedback is indirect and prone to error. Using an audible
signal (marked “beeps” in Table 7) for data exchange is
more intuitive, but this would not work well in noisy envi-
ronments and is still prone to a man-in-the-middle attack
since it can be difficult for people to tell where “beeps”
originate and how many devices are “beeping.”

Physical contact between devices is much more intu-
itive for people and captures the intentions of the users—

Resists
Channel COTS MITM Convenient
Ultrasound # #

Audible (“beeps”) # G#

Radio #

Physical Contact #

Wired Link #

Spoken Passwords N/A #

Written Passwords N/A #

Visual Hash Verif. G#

Infrared G# G#

Seeing-Is-Believing

Figure 7. Characteristics of various chan-
nels proposed for authentication. We ac-
knowledge that rating the convenience of a
channel is subjective; however, we believe
it is useful to compare various channels in
this way. COTS indicates that the necessary
hardware is already present in Commercial
Off-The-Shelf products. Symbols: yes (),
partial (G#), no (#).

identifying the devices between which they want to es-
tablish a secure communication link [41]. Unfortunately,
most current devices are not equipped with an interface
for this purpose. An alternative approach is to use a wired
link, for example connect both devices with a USB cable,
however, this approach is not convenient to use and people
would need to carry a wire with them.

Another approach is for Alice and Bob to establish a se-
cret password, either by speaking the password aloud, or
by writing passwords on paper and passing them to each
other. Both Alice and Bob would then need to type in the
password correctly, which the devices use to perform a
secure password protocol, e.g., EKE [6]. We believe this
approach is cumbersome in comparison with SiB, partic-
ularly on devices with a limited keyboard.

Finally, both devices could present a visual representa-
tion of the hash of the established Diffie-Hellman key to
detect a man-in-the-middle attack [13, 16, 27, 32]. These
approaches, however, are not secure unless people care-
fully compare the output of the visual hash function. We
believe SiB has an advantage here not just in ease-of-use
but because strong authentication is intrinsically linked
with device identification.

9.3. Attacks Against Seeing-Is-Believing

In Section 6 we showed how to achieve screen owner-
ship and application integrity on a TCG-compliant plat-

form. One weakness of our approach is that it provides
an instantaneous guarantee only. Once the application be-
ing verified (the user’s desired application) is no longer
in “always-on-top” mode, a malicious application may be
able to tamper with the input or output of the desired ap-
plication. This problem has been studied in the context
of secure windowing systems, e.g., [40], and is dependent
on window system policy. One solution is to leave the
application in always-on-top mode for the duration of its
use. In the context of TCG, if the user’s task is sufficiently
sensitive, she may only be willing to perform it when the
platform is in a “dedicated trusted state,” as detailed in [3].

Attackers may attempt to construct a window that ob-
scures all of the desired application except its barcode,
confusing the user into believing the malicious application
allowing the legitimate barcode to show through is actu-
ally the desired application. This attack is prevented by
using SiB with an application on the platform only when
that application is in “always-on-top” mode.

Attackers may also attempt to read the pixels of the
user’s desired application, identify which pixels represent
the barcode, and redisplay the legitimate barcode in a ma-
licious application that appears legitimate to the user. To
prevent this attack, the window manager must be able to
prevent other applications from reading the contents of
the screen where the user’s desired application is “always-
on-top.” This includes such cases as taking screenshots
and copy-and-paste operations. All pixels displayed by
the user’s desired application when it is in “always-on-
top” mode must be inaccessible by any other application.
Shapiro et al. have taken a step towards achieving the
necessary properties with the EROS trusted window sys-
tem [40].

In Section 7, we discuss a presence property which re-
quires the user to demonstrate that it can see a display.
Kuhn details some attacks which enable a malicious party
to read the contents of a CRT screen without actually be-
ing in line-of-sight with it. For example, a sophisticated
adversary may be able to measure the electromagnetic ra-
diation emitted by the CRT [25]. Alternatively, an ad-
versary may be able to assemble the contents of the CRT
by looking at reflected light from the CRT [24]. Defense
against this form of attack is outside the scope of SiB.

An attacker can disrupt the lighting conditions around
Alice and Bob in an attempt to disrupt SiB. However,
changes of sufficient magnitude to impair SiB are easily
observed by Alice, Bob, and any people in the vicinity,
alerting them to some kind of unusual behavior. A more
sophisticated, and subtle, attack is to use infrared radia-
tion to overwhelm the CCD3 in a phone’s camera. If an

3Charge Coupled Devices (CCDs) are the prevalent type of image
sensor used in today’s digital cameras.

attacker is able to flood an environment with sufficient in-
frared radiation, the CCD in a phone’s camera can begin
to saturate, and all attempts to take pictures will yield a
picture with all pixels set at or above the intensity of the
legitimate image, up to the maximum value for each pixel.
Essentially, the image becomes noise. Alice will see that
the image in her viewfinder is not the picture of Bob’s
phone that she expects, and can abort the protocol.

Even without a user monitoring the process, the
electronic-warfare-esque techniques necessary to cause
the CCD to output something other than the scene in front
of the camera are beyond the reach of all but the most so-
phisticated adversaries with current technology. We are
unaware of any attacks feasible today which result in any-
thing but noise from the camera under attack.

10. Conclusion

In this paper we propose Seeing-Is-Believing, a system
that uses barcodes and camera phones as a visual channel
for human-verifiable authentication. This channel rules
out man-in-the-middle attacks against public-key based
key establishment protocols. The visual channel has the
desirable property that it provides demonstrative identi-
fication of the communicating parties, providing the user
assurance that her device is communicating with that other
device. SiB enables establishment of a trusted path for
configuration of the TPM in a TCG-compliant computing
platform. Leveraging a TCG-compliant computing plat-
form and SiB, one can verify the integrity of an applica-
tion over multiple invocations. We have also analyzed the
establishment of secure, authenticated sessions between
SiB-enabled devices and devices missing either a camera,
a display, or both, and found that secure communication
is possible in many situations.

11. Acknowledgements

We are indebted to the following people for their in-
sightful comments and helpful discussions: Michael Abd-
El-Malek, Doug Baker, Lujo Bauer, Leendert van Dorn,
Simson Garfinkel, Jason Rouse, and Jesse Walker. We
would also like to thank the anonymous reviewers for their
valuable suggestions.

References

[1] CoolTown. http://www.cooltown.com/, Nov.
2004.

[2] Trusted Computing Group. http://www.
trustedcomputinggroup.org/, Nov. 2004.

[3] B. Balacheff, L. Chen, S. Pearson, D. Plaquin, and
G. Proudler. Trusted Computing Platforms – TCPA Tech-
nology in Context. Prentice Hall, 2003.

[4] D. Balfanz, D. Smetters, P. Stewart, and H. C. Wong. Talk-
ing to strangers: Authentication in ad-hoc wireless net-
works. In Proceedings of the Symposium on Network and
Distributed Systems Security (NDSS), Feb. 2002.

[5] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval.
Key-privacy in public-key encryption. In Proceedings of
Advances in Cryptology (ASIACRYPT), 2001.

[6] S. Bellovin and M. Merrit. Augmented encrypted key ex-
change: a password-based protocol secure against dictio-
nary atttacks and password file compromise. In Proceed-
ings of the ACM Conference on Computer and Communi-
cations Security (CCS), pages 244–250, 1993.

[7] S. M. Bellovin and M. Merrit. Encrypted key exchange:
Password-based protocols secure against dictionary at-
tacks. In Proceedings of the IEEE Symposium on Security
and Privacy, pages 72–84, 1992.

[8] V. Boyko, P. MacKenzie, and S. Patel. Provably secure
password authentication and key exchange using Diffie-
Hellman. In Proceedings of Advances in Cryptology (EU-
ROCRYPT), pages 156–171, 2000.

[9] M. Burnside, D. Clarke, B. Gassend, T. Kotwal, M. Burn-
side, S. Devadas, and R. Rivest. The untrusted computer
problem and camera-based authentication. In Proceedings
of Pervasive Computing (Pervasive), Aug. 2002.

[10] F. Dawson and T. Howes. RFC2426: vCard MIME
directory profile. http://www.faqs.org/rfcs/
rfc2426.html, Sept. 1998.

[11] T. Dierks and C. Allen. RFC 2246: The TLS proto-
col: Version 1.0. http://www.faqs.org/rfcs/
rfc2246.html, Jan. 1999.

[12] W. Diffie and M. E. Hellman. New directions in cryptog-
raphy. IEEE Trans. Inform. Theory, IT-22:644–654, Nov.
1976.

[13] S. Dohrmann and C. Ellison. Public key support for col-
laborative groups. In Proceedings of the PKI Research
Workshop, Apr. 2002.

[14] A. O. Freier, P. Karlton, and P. C. Kocher. The SSL proto-
col: Version 3.0. http://wp.netscape.com/eng/
ssl3/draft302.txt, Nov. 1996.

[15] E. Gieseke and J. McLaughlin. Secure web authentica-
tion with mobile phones using keyed hash authentication.
CSCI E 170 Final Project, Harvard University Extension,
Jan. 2005.

[16] I. Goldberg. Visual key fingerprint code. http://www.
cs.berkeley.edu/iang/visprint.c, 1996.

[17] J. C. Haartsen. The Bluetooth radio system. IEEE Per-
sonal Communications Magazine, pages 28–36, 2000.

[18] S. R. Hanna. Configuring security parameters in small
devices. draft-hanna-zeroconf-seccfg-00.
txt, July 2002.

[19] D. Harkins and D. Carrel. RFC2409: The Internet key
exchange (IKE). http://www.faqs.org/rfcs/
rfc2409.html, Nov. 1998.

[20] T. Howes and M. Smith. RFC2426: MIME content-type
for directory information. http://www.faqs.org/
rfcs/rfc2425.html, Sept. 1998.

[21] P. Jones. RFC3174: US secure hash algorithm 1 (SHA-
1). http://www.faqs.org/rfcs/rfc3174.
html, Sept. 2001.

[22] P. Karn. Reed-solomon encoding/decoding. http://
www.ka9q.net/code/fec/, 2002.

[23] L. M. Kohnfelder. Towards a practical public-key cryp-
tosystem. B.Sc thesis, MIT Departement of Electrical En-
gineering, 1978.

[24] M. G. Kuhn. Optical time-domain eavesdropping risks of
crt displays. In Proceedings of the IEEE Symposium on
Security and Privacy, May 2002.

[25] M. G. Kuhn and R. J. Anderson. Soft tempest: Hidden
data transmission using electromagnetic emanations. In
Proceedings of the Information Hiding Workshop (IHW),
pages 124–142, Apr. 1998.

[26] A. K. Lenstra and E. R. Verheul. Selecting cryptographic
key sizes. Journal of Cryptology, 14(4):255–293, 2001.

[27] R. Levien. PGP snowflake. Personal communication,
1996.

[28] P. MacKenzie, S. Patel, and R. Swaminathan. Password
authenticated key exchange based on RSA. In Proceedings
of Advances in Cryptology (ASIACRYPT), pages 599–613,
2000.

[29] A. Madhavapeddy, D. Scott, R. Sharp, and E. Upton. Us-
ing camera-phones to enhance human-computer interac-
tion. In Proceedings of Ubiquitous Computing (Adjunct
Proceedings: Demos), 2004.

[30] A. Madhavapeddy, D. Scott, R. Sharp, and E. Upton. Us-
ing visual tags to bypass bluetooth device discovery. In
Proceedings of the ACM Mobile Computing and Commu-
nications Review (MC2R), Jan. 2005.

[31] S. P. Miller, C. Neuman, J. I. Schiller, and J. H. Saltzer.
Kerberos authentication and authorization system. In
Project Athena Technical Plan, page section E.2.1, 1987.

[32] A. Perrig and D. Song. Hash visualization: A new tech-
nique to improve real-world security. In Proceedings of the
Workshop on Cryptographic Techniques and E-Commerce
(CrypTEC), pages 131–138, July 1999.

[33] I. S. Reed and G. Solomon. Polynomial codes over cer-
tain finite fields. Journal of the Society for Industrial and
Applied Mathematics, 1960.

[34] M. Rohs and B. Gfeller. Using camera-equipped mobile
phones for interacting with real-world objects. Proceed-
ings of Advances in Pervasive Computing, pages 265–271,
Apr. 2004.

[35] S. Ross, J. Hill, M. Chen, A. D. Joseph, D. Culler, and
E. Brewer. A composable framework for secure multi-
modal access to Internet services from post-PC devices.
In Mobile Networks and Applications (Special Issue: Se-
lected papers from WMCSA 2000), pages 389–406, Oct.
2002.

[36] RVSI Acuity CiMatrix. Data matrix barcodes. http://
www.rvsi.com/acuitycimatrix/index.htm,
2005.

[37] P. Rysavy. General packet radio service (GPRS). GSM
Data Today, Sept. 1998.

[38] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. De-
sign and implementation of a TCG-based integrity mea-
surement architecture. In Proceedings of the USENIX Se-
curity Symposium, 2004.

[39] S. Saroiu, S. D. Gribble, and H. M. Levy. Measurement
and analysis of spyware in a university environment. In
Proceedings of the Symposium on Networked Systems De-
sign and Implementation (NSDI), Mar. 2004.

[40] J. S. Shapiro, J. Vanderburgh, E. Northup, and D. Chiz-
madia. Design of the EROS trusted window system. In
Proceedings of the USENIX Security Symposium, pages
165–178, 2004.

[41] F. Stajano and R. Anderson. The resurrecting duckling:
Security issues for ad-hoc wireless networks. In Proceed-
ings of the Security Protocols Workshop, 1999.

[42] J. G. Steiner, C. Neuman, and J. I. Schiller. Ker-
beros: An authentication service for open network sys-
tems. Manuscript, Mar. 1988.

[43] Symbol Technologies. PDF417. http://www.
pdf417.com/, Feb. 2005.

[44] A. Thoukydides. SIS file format. http:
//homepage.ntlworld.com/thouky/
software/psifs/sis.html, 2004.

[45] Trusted Computing Group. Trusted platform module
main specification, Part 1: Design principles, Part 2:
TPM structures, Part 3: Commands. http://www.
trustedcomputinggroup.org, Oct. 2003. Version
1.2, Revision 62.

[46] J. D. Tygar and A. Whitten. WWW electronic commerce
and Java Trojan horses. In Proceedings of the USENIX
Workshop on Electronic Commerce, pages 243–250, Nov.
1996.

[47] United Parcel Service. MaxiCode. http://www.
maxicode.com/, Feb. 2005.

[48] S. Čapkun, J. Hubaux, and L. Buttyán. Mobility helps
security in ad hoc networks. In Proceedings of the ACM
Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc), June 2003.

[49] S. Woodside. Read real-world hyperlinks with a camera
phone. http://semacode.org/, Feb. 2005.

[50] M. Wu, S. Garfinkel, and R. Miller. Secure
web authentication with mobile phones. http:
//dimacs.rutgers.edu/Workshops/Tools/
abstract-wu-garfinkel-miller.%pdf.

[51] T. Wu. The secure remote password protocol. In Pro-
ceedings of the Network and Distributed System Security
Symposium (NDSS), Feb. 1999.

[52] P. Zimmermann. The Official PGP User’s Guide. MIT
Press, 1995.

