
Bump in the Ether:
A Framework for Securing Sensitive User Input

Jonathan M. McCune Adrian Perrig Michael K. Reiter
Carnegie Mellon University

{jonmccune, perrig, reiter}@cmu.edu

Abstract

We present Bump in the Ether (BitE), an approach for
preventing user-space malware from accessing sensitive
user input and providing the user with additional confi-
dence that her input is being delivered to the expected
application. Rather than preventing malware from run-
ning or detecting already-running malware, we facilitate
user input that bypasses common avenues of attack. User
input traverses a trusted tunnel from the input device to
the application. This trusted tunnel is implemented us-
ing a trusted mobile device working in tandem with a
host platform capable of attesting to its current software
state. Based on a received attestation, the mobile device
verifies the integrity of the host platform and application,
provides a trusted display through which the user selects
the application to which her inputs should be directed,
and encrypts those inputs so that only the expected ap-
plication can decrypt them. We describe the design and
implementation of BitE, with emphasis on both usability
and security issues.

1 Introduction
Using security-sensitive applications on current com-
puter systems exposes the user to numerous risks. User-
level malware such as keyloggers, spyware, or Tro-
jans often monitor and log every keystroke. Through
keystrokes, an adversary may learn sensitive informa-
tion such as passwords, bank account numbers, or credit
card numbers. Unfortunately, current computing envi-
ronments make such keystroke logging trivial; for ex-
ample, X-windows allows any application to register a
callback function for keyboard events destined for any
application. Giampaolo created a simple 100-line C pro-
gram that is able to capture keyboard input events that
the user intended for some other application under X11.
Similar vulnerabilities exist in Microsoft Windows, e.g.,
RegisterHotKey and SendInput can be used in
combination from an application that does not currently
have input focus to capture user input to the application
with input focus. We conclude that it is desirable to re-
duce the involvement of the window manager in sensitive
I/O activities as much as possible.

Besides the ease of eavesdropping on keystrokes, an-
other serious risk to the user is the integrity of screen
content. Malicious applications can easily overwrite any
screen area. This introduces the threat that a user can-
not trust any content displayed on the screen since it may

originate from a malicious application. Additionally, ma-
licious software that can capture the screen content of
running applications may be able to extract valuable se-
crets (e.g., the user is filling out an electronic tax form
with banking software).

In such an environment, it is challenging to design a
system that provides the user with guarantees that the
correct operating system and the correct application are
currently running, and that only the correct application
will receive the user’s keystrokes. In particular, we
would like a computing environment with the following
properties:

• The user obtains user-verifiable evidence that the
correct OS and the correct application loaded.

• The user obtains user-verifiable evidence that only
the correct application is receiving keystroke events.

We designed and prototyped Bump in the Ether (BitE),
a system that proxies user input via a trusted mobile de-
vice, circumventing the window manager and traditional
input paths via a user-verifiable trusted tunnel. We name
the system Bump in the Ether because part of the in-
spiration for this work came from devices referred to as
“bumps in the cord”, which were devices used to “scram-
ble” conversations on plain old telephone service (POTS)
in an effort to foil eavesdroppers.

Tunnels in BitE are end-to-end encrypted, authenti-
cated tunnels between a trusted mobile device and a par-
ticular application on the user’s host platform. Figure 1
shows a comparison of the legacy input path versus in-
put through a trusted tunnel. To reduce the user’s need to
trust the window manager, we use the display on a trusted
mobile device as a trusted output mechanism. We design
an OS module that directly passes sensitive keystrokes
from the user’s mobile device to the correct application,
bypassing the X-windowing system.

We assume the user’s computing platform is capable
of attesting to its current software state. For the remain-
der of this paper, we assume the user’s computing plat-
form is equipped with a Trusted Platform Module (TPM)
as specified by the Trusted Computing Group (TCG),
and that the BIOS and OS are TPM-enabled and per-
form integrity measurements of code loaded for execu-
tion [26, 37]. The user’s mobile device is used to verify
these measurements.

Trusted tunnels use per-application cryptographic
keys which are established during an application regis-
tration phase. The process of establishing a trusted input

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 185



session over the trusted tunnel is contingent on the mo-
bile device’s successfully verifying an attestation from
the integrity measurement architecture (IMA [26]) and
TPM on the user’s host platform, as well as the user se-
lecting the correct application from a list presented by
her mobile device.

2 Background and Related Work
We provide background and review related work on mo-
bile devices, secure window managers, and trusted com-
puting primitives.

2.1 Mobile Devices
Balfanz and Felten explored the use of hand-held com-
puting devices (e.g., PDAs) as smart-cards, and found
some advantages because the user can interact directly
with the hand-held for sensitive operations [1]. The au-
thors generalized their work into a design paradigm they
call splitting trust, where a smaller, trusted device per-
forms security-sensitive operations and a large, powerful
device performs other operations. BitE can be consid-
ered a system designed in accordance with the principles
of splitting trust.

The Pebbles project attempts to let handhelds and PCs
work together when both are available, as opposed to the
conventional view that handhelds are used when PCs are
unavailable [20]. BitE uses a trusted mobile device to
help improve input security on a PC.

Ross et al. develop a framework for access to Inter-
net services, where both the sensitivity of the informa-
tion provided by the service and the capabilities of the
client device are incorporated [25]. This framework de-
pends on either a trusted proxy infrastructure or service
providers running a trusted proxy. While promising, this
scheme is not widely deployed today.

Sharp et al. develop a system for splitting input and
output across an untrusted terminal and a trusted mobile
device [31]. Applications run on a trusted server or on
the mobile device itself, using VNC [23] to export video
to the trusted and untrusted displays in accordance with a
security policy. The user has the ability to decide on the
security policy used for the untrusted keyboard, mouse,
and display. An initial user study yielded encouraging
results, but this technique is best described as a tool for
power users. In contrast, BitE is designed for interaction
with applications running on a local workstation, and for
users who may have very little understanding of com-
puter security.

Sharp et al. propose an architecture for fighting crime-
ware (e.g., keyloggers and screengrabbers) via split-trust
web applications [30]. Web-applications are written to
support an untrusted browser and a trusted mobile device
with limited browsing capabilities. All security-critical
decisions are confirmed on the mobile device. This ar-
chitecture raises the bar for web-based attackers, but it
also raises usability issues which are the subject of future

work. BitE is designed to improve the security of interac-
tion between a user and applications on her local work-
station. While that application can be a web browser,
BitE does not specifically address web security issues.

2.2 Secure Window Managers
A goal of BitE is to ensure that only the correct ap-
plication is receiving input events, and to provide user-
verifiable evidence that this is so. While much prior work
has addressed this issue, none of it is readily available for
non-expert users on commodity systems today. We now
review related work chronologically.

Several government and military computer window-
ing systems have been developed with attention to se-
curity and the need to carefully isolate different grades
of information (e.g., classified, secret, top secret). Early
efforts to secure commercial window managers resulted
in the development of Compartmented Mode Worksta-
tions [5, 6, 11, 22, 24, 38], where tasks with different se-
curity requirements are strictly isolated from each other.
These works consider an operating environment where
an employee has various tasks she needs to perform, and
some of her tasks have security requirements that neces-
sitate isolation from other tasks. For example, Picciotto
et al. consider trusted cut-and-paste in the X window sys-
tem [21]. Cut-and-paste is strictly confined to allow in-
formation flow from low-sensitivity to high-sensitivity
applications, so that high-sensitivity information can
never make its way into a low-sensitivity application.
Epstein et al. performed significant work towards trusted
X for military systems in the early 1990s [8, 9, 10].
While these systems are effective for employees trained
in security-sensitive tasks, they are unsuitable for use by
consumers.

Shapiro et al. propose the EROS Trusted Window Sys-
tem [29], which demonstrates that breaking an applica-
tion into smaller components can greatly increase secu-
rity while maintaining very powerful windowing func-
tionality. Unfortunately, EROS is incompatible with a
significant amount of legacy software, which hampers
widespread adoption. In contrast, BitE works in concert
with existing window managers.

Microsoft’s Next-Generation Secure Computing Base
(NGSCB) proposes encrypting keyboard and mouse in-
put, and video output [18]. In NGSCB, special USB key-
boards encrypt keystrokes which pass through the regu-
lar operating system into the Nexus, where they are de-
crypted. Once in the Nexus, they can be sent to a trusted
application running in Nexus-mode, or they can be sent
to the legacy OS. Applications running in Nexus-mode
have the ability to take control of the system’s primary
display, which was designed to be useful for establishing
a trusted tunnel.

Common to the majority of these schemes is a mech-
anism by which some portion of the computer’s screen
is trusted. That is, an area of the screen is controlled by

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association186



p a s s p a s s

0x

0x 0x User Space

Kernel Space

Trusted tunnel

Legacy channel

Legend

wsp a s

Keyboard

X
1
1

ev
en

ts

X
1
1

ev
en

ts

OS Kernel

Application
Malicious�

Application

X11

Host platform

Figure 1: Traditional flow of keystrokes vs. trusted tunnels. On a traditional computer system, keystrokes are first sent
to the OS kernel, which passes them to X-windows, which then sends keyboard events to all applications that register
to receive them. Unfortunately, malicious applications can register a callback function for keyboard events for other
applications. Our trusted tunnels protect keystrokes and only send them to the desired application.

some component of the trusted computing base (TCB)
and is inaccessible to all user applications. However,
if an application can use a “full-screen” mode, it may
be able to spoof any trusted output. Precisely defining
trusted full-screen semantics that a non-expert user can
operate securely is, to the best of our knowledge, an un-
solved problem. Considering the value that the user re-
ceives from being able to maximize applications, and the
role of multi-media applications on today’s commodity
PCs, we believe the ability to run applications in full-
screen mode on the system’s primary display is an indis-
pensable feature. Still, there is no effective way to estab-
lish a trusted tunnel if there is no trusted display. Due to
the complexity of X and the likely confusion of untrained
users, it is difficult to implement a trusted screen area in
an assurable way. BitE uses the trusted mobile device’s
screen—a physically separate display—as a trusted out-
put device.

We emphasize that, despite the large body of work on
trusted windowing systems, the majority of users do not
employ any kind of trusted windowing system. Thus, we
proceed under the assumption that users do not want to
change their windowing system. In the remainder of the
paper, we show that BitE can increase user input security
under these conditions.

2.3 Trusted Computing Primitives
BitE leverages two features of the user’s TPM-equipped
computing platform: attestation and sealed storage.
To enable these features, the platform’s OS must be
equipped with an integrity measurement architecture
(IMA). The values resulting from integrity measurement
are used in attestations and in access control for sealed
storage. The remainder of this section provides more de-
tail on these mechanisms.

TPMs have 16 platform configuration registers (PCRs)
that an IMA can extend with measurements (typically
cryptographic hashes computed over a complete exe-
cutable) of software loaded for execution. The IMA ex-
tends the appropriate PCR registers with the measure-

ment of each software executable just before it is loaded.
TPMs can generate a Storage Root Key (SRK) that

will never leave the chip. The SRK enables sealed stor-
age, whereby data leaving the TPM chip is encrypted un-
der the SRK for storage on another medium. Data can be
sealed with respect to the values of certain PCR registers,
so that the unsealing process will fail unless the same
values are present that were present during the sealing
process. Several other keys are maintained by the TPM
and kept in sealed storage when not in use. One of these
is the Attestation Identity Key (AIK), which is an RSA
signing keypair used to sign attestations. To the remote
party trying to verify the attestation, the public AIK rep-
resents the identity of the attesting platform.

An attestation produced by the IMA and TPM con-
sists of two parts: (1) a list of the measurements of all
software loaded for execution, maintained by the IMA
functionality in the OS; and (2) an AIK-signed list of the
values in the PCR registers, called a PCR quote. A re-
mote party with an authentic copy of the public AIK can
compute the expected values for the PCR registers based
on the measurement list, and check to see whether the
signed values match the computed values. The end re-
sult is a chain of measurements of all software loaded
since the last reboot. The security requirement is that all
software is measured before being loaded for execution.

Sailer et al. developed an open-source IMA for
Linux [26]. They show that it is difficult to manage the
integrity measurements of a complete interactive com-
puter system, since there will be hundreds or even thou-
sands of measurements in the course of a normal sys-
tem’s uptime, and the order in which applications are ex-
ecuted is reflected in the resulting PCR values. This or-
dering is not a problem for attestation, since the measure-
ment list can be validated against the PCR values. How-
ever, it is an issue for sealed storage, since data is sealed
with respect to PCR values, and not particular items on
the measurement list. Thus, to access data in sealed stor-
age, not only must the same software be loaded, but it
must have been loaded in the same order.

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 187



During the boot process, however, a well-behaved sys-
tem always loads in the same order. Hence, integrity
measurement of the system from boot through the load-
ing of the kernel, its modules, and system services loaded
in a deterministic order will be consistent across multiple
boot cycles on a well-behaved host platform.

One problem with IMA as described is that integrity
measurements are made at load-time. Thus, run-time
vulnerabilities may go undetected if malicious parties
can exploit the difference between time-of-check and
time-of-use (so-called TOCTOU attacks). IMA can be
used in combination with systems which provide run-
time attestation [32] or verifiable code execution [28] to
achieve even stronger platform security guarantees.

3 Bump in the Ether
We provide a brief overview of BitE and present the as-
sumptions under which it operates. We then discuss the
necessary setup which must take place before BitE can
be used. We describe the use of BitE to secure user input
in Section 4.

3.1 System Overview
The primary goal of BitE is to enable end-to-end en-
crypted, authenticated input between the user’s trusted
mobile device and an application running on her host
platform. BitE is built around a trusted mobile device
that can proxy user input, show data on its own display,
efficiently perform asymmetric and symmetric crypto-
graphic operations, and store cryptographic keys. This
trusted device runs a piece of software called the BitE
Mobile Client. The BitE Mobile Client verifies attes-
tations from the host platform, manages cryptographic
keys used in establishing trusted tunnels for user input,
and provides a trusted output mechanism which can in-
form the user of security-relevant events.

We summarize the two setup steps and common usage
for BitE.

1. Building an association between the trusted mobile
device and the host platform (Section 3.3.1). This is
performed once for each trusted mobile device and
host platform pair.

2. Registering applications on the host platform for
use with BitE (Section 3.3.2). This is performed
once for each registered application on a particular
trusted mobile device and host platform pair.

3. Sending user input to a registered application (Sec-
tion 4). This is performed every time secure input
to a registered application is required. We consider
two kinds of registered applications, those which
are BitE-aware, and those which are not.

3.2 Threat Model and Assumptions
Users use their computers to process sensitive informa-
tion, for example, banking applications, corporate VPNs,
and management of financial information. Attackers are

interested in stealing such information, often with the in-
tent to commit identity theft. One technique which at-
tackers use is user-space malware, including Trojans and
spyware such as keyloggers and screengrabbers.

BitE protects user input against user-space malware.
We assume attackers are capable of passive monitoring
and active injection attacks on the network link between
the user’s trusted mobile device and her host platform.
We assume the user’s mobile device is not compromised,
although we discuss the possibility of using mutual at-
testation between the mobile device and host platform to
detect a compromised mobile device in Section 5.3.

The mobile device must simultaneously connect to the
user’s input device (e.g., keyboard) and her host plat-
form. We assume that a secure (direct physical connec-
tion, or authenticated and encrypted wireless connection)
association between the user’s input device and her mo-
bile device can be established. However, there are envi-
ronments where the user is wary of trusting an unknown
keyboard for fear of hardware keyloggers. In such en-
vironments, the user can enter sensitive information di-
rectly into her mobile device, avoiding the use of the
suspicious keyboard. Physical attacks such as “shoulder
surfing” and keyboard emanation attacks [41] are beyond
the scope of BitE. Thus, we do not discuss them further.
For the remainder of the paper, we consider the user’s
input device (e.g., wireless keyboard) as an extension of
her mobile device. Subsequent discussions will focus on
interaction between the user, her mobile device, and her
host platform.

We use attestation to verify the integrity of code
loaded for execution on the user’s host platform, so we
need not assume that the host platform’s software in-
tegrity is intact. However, as discussed in Section 2.3,
the integrity measurement architecture used for attesta-
tion has TOCTOU limitations. Specifically, attestation
allows us to detect modified program binaries before they
are loaded. If a loaded application is compromised while
running, however, IMA will not detect it.

We must trust the OS kernel on the host platform with
which the user wishes to establish a trusted tunnel for in-
put. One reason we must trust the OS kernel is because
of its ability to arbitrarily read and modify the memory
space of any process executing on the system—we can-
not trust an application without also trusting the kernel
on which it runs.

3.3 BitE Setup

We now describe application setup with BitE, which con-
sists of two steps: (1) an association between the trusted
mobile device and the host platform must be created, and
(2) applications for which BitE will be used to secure
their input must be registered with the BitE system.

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association188



3.3.1 Device Association
An association between the trusted mobile device and the
host platform consists of two parts: (1) the BitE Mobile
Client’s ability to verify attestations from the host plat-
form, and (2) keys for mutually authenticated and en-
crypted communication between the BitE Mobile Client
and the BitE Kernel Module. The purpose of the attes-
tation is to detect malware on the host platform; the pur-
pose of the mutually authenticated and encrypted com-
munication is to thwart active injection and passive mon-
itoring attacks on the wireless connection between the
BitE Mobile Client and the BitE Kernel Module.

To enable the BitE Mobile Client to verify attestations,
it must be equipped with a set of expected measurements
of acceptable software configurations for the host plat-
form. However, the set of all possible software configu-
rations that may be running on the host platform is un-
manageable, as that set may include any piece of soft-
ware that the user installs (willingly or unwillingly) on
her host platform.

Our solution is to verify the measurements of those
software components which are expected to change in-
frequently on a healthy system: the boot stack, the ker-
nel, its modules (including the BitE Kernel Module),
and well-ordered system services (those software com-
ponents whose measurements are expected to occur in
the same order between boot cycles). The BitE Mobile
Client must be equipped with the expected values for the
measurements of this infrequently-changing software so
that it can verify attested measurements. In our current
prototype, this is a manual process by which we add the
expected filenames and measurements to a configuration
file on the BitE Mobile Client. Another solution would
be to add a configuration program which runs last during
the boot process on the host platform, so that it can save a
copy of all measurements of well-ordered services. Note
that this still has the drawback that we are simply as-
suming the system to be secure when the configuration
program runs; this is best done on a new system before
it is connected to the Internet or other potential source of
malware.

To authenticate the origin of an attestation, and to ver-
ify that the measurement list received matches the PCR
quote from the host platform’s TPM, the BitE Mobile
Client must be equipped with the public Attestation Iden-
tity Key (AIK ) from the host platform’s TPM. The AIK

is required by the BitE Mobile Client to verify the digital
signature on attestations from the TPM in the host plat-
form. Our current design only performs one-way attesta-
tion (host platform to mobile device); however, we dis-
cuss the possibility of mutual attestation in Section 5.3.

The BitE Mobile Client and the BitE Kernel Mod-
ule must be able to establish mutually authenticated, en-
crypted communication to resist active injection and pas-
sive monitoring attacks on the wireless link between the
user’s mobile device and her host platform. Standard

protocols exist for this purpose (e.g., SSL [12]) provided
that authentic cryptographic keys are in place. We use the
notation {KKM ,K−1

KM }, CertKM and {KMC ,K−1

MC },
CertMC for the asymmetric (e.g., RSA) keypairs and
certificates (e.g., self-signed X509) for the BitE Kernel
Module and the BitE Mobile Client, respectively.

We assume for simplicity that the attacker is not
present during the exchange of AIK , CertKM , and
CertMC . Thus, our current prototype exchanges these
keys in the clear. We note that securing this key ex-
change is possible, though challenging. A potential solu-
tion is to use location-limited side channels to exchange
pre-authentication data. Seeing-is-Believing and related
techniques could be applied here [2, 16, 34].

3.3.2 Application Registration
Applications must be registered with the BitE Kernel
Module and the BitE Mobile Client so that their integrity
can be verified during subsequent attempts by the user
to send input to them. The integrity measurement of
each application serves as access control for application-
specific cryptographic keys which are used to establish
the trusted tunnel for user input.

To obtain the expected measurement value of an appli-
cation, the user first indicates her desire to register a new
application to the BitE Mobile Client. She then performs
an initial execution of the application to be registered on
her host platform. The IMA automatically measures this
application and its library dependencies and stores them
in the IMA measurement list (see [26] for details). We
assume the system state can be trusted during applica-
tion registration (i.e., there is no malicious code execut-
ing). Note that other dependencies may exist that we
wish to measure. For example, configuration files can
have a significant impact on application security. Auto-
matic identification of configuration files associated with
a particular application is complex, and beyond the scope
of this paper. Alternatively, a trusted authority could pro-
vide the measurement values for a trustworthy version of
the application.

The BitE Kernel Module generates a symmetric key
KAppi

(for application i) to be used in subsequent con-
nections for the derivation of encryption and MAC ses-
sion keys for establishing the trusted tunnel. These
per-application cryptographic keys are kept in TPM-
protected sealed storage [37]. They are sealed under the
PCR values which represent the boot process up through
the loading of well-ordered system services (as described
in Section 3.3.1). Handling which PCR registers receive
which measurements is an issue which requires some
care. We introduce the issue, and then present two possi-
ble solutions.

We dedicate a subset of the available PCRs for mea-
surements of the well-ordered system services. However,
once the appropriate measurements are in these PCRs,
the TPM will allow the secrets in sealed storage to be

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 189



unsealed. A temping solution is to invalidate these PCRs
after the BitE Kernel Module reads the sealed secrets
by “measuring” some random data; however, this pre-
vents the BitE Kernel Module from adding new secrets
to sealed storage during the current boot cycle.

One option is to use dedicated PCR registers for the
well-ordered system services, but not invalidate these
registers after the BitE Kernel Module reads the sealed
secrets. We must then trust the OS to restrict access to
the TPM and hence the interface with sealed storage.
This way, the BitE Kernel Module can add new secrets
to sealed storage at any time. Our current prototype uses
this option, which is more convenient, but less secure,
than the next option.

An alternative is to allow application registration only
immediately after a reboot. Thus, the application to be
registered is the only software run during that boot cycle
that is not part of the well-ordered system services, re-
sulting in a more secure system state for registration, so
that it is safer to leave the contents of the PCRs dedicated
to well-ordered system services intact. Note that the re-
boot into “registration mode” may need to be a special,
reduced-service reboot if there is non-determinism in the
order in which some services are executed. For exam-
ple, a host platform which starts a web server early in the
boot process may execute a CGI script before the rest of
the system has finished booting and invalidate some PCR
values.

The IMA measurement for application i, the newly
generated symmetric key KAppi

, and the user-friendly
name of the registered application (e.g., OpenOffice
Calc), are sent over a mutually authenticated, encrypted
channel (established using CertKM and CertMC in,
e.g., SSL with ephemeral Diffie-Hellman key agree-
ment [12]) to the BitE Mobile Client, where they are
stored for future use.

4 Operation
We now describe the actual process by which a user using
BitE securely enters input into a registered application.
At this point, the association between the trusted mo-
bile device and the host platform is established, and the
user’s application(s) have been registered with the BitE
system. The goal is to establish an end-to-end trusted
tunnel for input between the user’s trusted mobile device
and an application running on her host platform. We
define a trusted tunnel to be a mutually authenticated,
encrypted network connection. We describe BitE using
Linux and X11 terminology [39, 40]. However, our tech-
niques can be applied to other operating environments,
e.g., Microsoft Windows or Apple OS X, contingent on
the existence of some means for attesting to the current
software state.

We first consider applications designed with knowl-
edge of BitE (Section 4.1), and later describe a wrapper
which can be used with legacy applications (Section 4.2).

We also consider conflict resolution which becomes nec-
essary when multiple applications require a trusted tun-
nel concurrently (Section 4.3). Figure 2 shows a proce-
dural overview of secure input using BitE.

4.1 BitE-Aware Applications
Establishment of a trusted tunnel is initiated by a BitE-
aware application when it requires sensitive input (e.g.,
passwords or credit card numbers) from the user. The
application sends a message to the BitE Kernel Module
to register an input-event callback function implemented
by the BitE-aware portion of the application. If the BitE
Kernel Module has no other outstanding requests, it be-
gins the process of establishing the trusted tunnel. We
discuss extensions to allow the user to manually initiate
a trusted tunnel in Section 6.2.

There are three steps in the establishment of a secure
input session:

1. Verification by the BitE Mobile Client of an attesta-
tion produced by the host platform, including verifi-
cation that the desired application was loaded (Sec-
tion 4.1.1).

2. Interaction between the user and her trusted mo-
bile device to confirm that it is indeed her desired
application which is requesting secure input (Sec-
tion 4.1.2).

3. Establishment of the session keys which will
be used to encrypt and authenticate the actual
keystrokes entered by the user (Section 4.1.3).

4.1.1 Attestation of Host Platform State
The BitE Mobile Client must verify an attestation of the
software which has been loaded on the user’s host plat-
form. This serves two purposes: (1) to ensure the the the
well-ordered system services on the host platform have
not been modified since the mobile device / host plat-
form association, and (2) to ensure that the trusted tunnel
for input is established with exactly the same application
that was initially registered. The BitE Mobile Client can
verify the signature on the attestation with its authentic
copy of the public AIK, and it can verify that the mea-
surement list is consistent with the signed PCR quote.
It can then compare the measurement values with those
present during application registration (Section 3.3.2). If
the values match, we consider the host platform to have
successfully attested its software state to the BitE Mobile
Client. The trusted mobile device now has assurance that
the loaded versions of the well-ordered system services
and the user’s desired application match those recorded
during registration. If this verification fails, then the pro-
cess of establishing a trusted tunnel for input is aborted,
and the user is notified via the display on her trusted mo-
bile device.

Note that the software state of a host platform is com-
prised of all software loaded for execution; we discussed
the difficulty of managing this state space in Section 2.3.

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association190



0x

0x
0x

0x

0x

User Space

Kernel Space

X11

b1

b2

Application

bluetooth.o

module

BitE.o

module

0x
0x

0x

0x

p a s s

encrypted

wireless

channel

encrypted

wireless

channel

Keyboard

drow

legacy

output

...

sp a s

Host platform

trusted display

Legend

Communication

Encrypted KB Event

BitE�

Mobile�

Client

additional�

modules...

OS Kernel

BitE-�

aware

Figure 2: BitE system architecture. The user presses keys (e.g., types a password) on the keyboard. The keypress
events are sent over an encrypted channel to the BitE Mobile Client. The BitE Mobile Client re-encrypts the keyboard
events with a cryptographic key that is specific to some application. On the host platform, the encrypted keyboard
events are passed to the BitE Kernel Module, and then to the application, where they are decrypted.

We verify measurements of the well-ordered system ser-
vices and the user’s desired application, but other soft-
ware may be executing. It is such unknown user-level
software against which the trusted tunnel offers protec-
tion.

4.1.2 User / Mobile Device Interaction
The trusted mobile device’s display serves as a trusted
output channel to the user. This enables us to minimize
the amount of trust we place in the window manager on
the host platform. Upon verifying an attestation from the
host platform, the BitE Mobile Client has assurance that
the correct application was loaded. Before session keys
can be established to form the trusted tunnel, it is neces-
sary to involve the user via her trusted mobile device to
ensure that the application with which the user intends to
interact and the application asking for her input are the
same. This property can be challenging to achieve with-
out annoying the user. A viable solution is one that is
easy to use, but not so easy that the user “just hits OK”
every time.

Our solution is to display a list of registered applica-
tions on the BitE Mobile Client. The user must scroll
down (using the arrow keys on her keyboard, or navi-
gational buttons on the trusted mobile device itself) and
then select (e.g., press enter) the correct application.
Note that since all input from the user’s keyboard passes
through the trusted mobile device the user does not ac-
tually need to press buttons on the mobile device. The
mobile device will interpret the user input from her key-

board appropriately. We believe user confusion will be
minimal, but a user-study is needed to validate this so-
lution. Refer to Figure 3 for more information on the
interaction between the user and her trusted mobile de-
vice.

We are concerned about users developing habits that
might increase their susceptibility to spoofing attacks.
Thus, we randomize the order of the list so that the user
cannot develop a habit of pressing, e.g., “down-down-
enter,” when starting a particular application that requires
a trusted tunnel. Instead, the user must actually read the
list displayed on her mobile device and think about se-
lecting the appropriate application. We believe selection
from a randomized list achieves a good balance between
security and usability, provided that the length of the list
is constrained (for example, that it always fits on the mo-
bile device’s screen).

Once the list is displayed, the BitE Mobile Client sig-
nals the user, e.g., by beeping. This serves two purposes:
(1) to let the user know that a secure input process is
beginning; and (2) to let the user know that she must
make a selection from choices on the mobile device’s
screen. Item (2) is necessary because a user may become
confused if her application seems unresponsive when in
reality the BitE Mobile Client on her mobile device is
prompting her for a particular action.

Note that a look-alike (e.g., Trojan, spoofing attack)
application will be unable to get the mobile device to dis-
play an appropriate name, because the look-alike appli-
cation was never registered with the BitE system. Only

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 191



User Mobile Device Kernel Module Appi

wants to possesses possesses BitE-aware
use Appi KAppi

KAppi

runs Appi ima measure(Appi)
need TT to
auth. user

reqTT
←−

reqTT ,Appi

←−
check attestation
display App list

selects Appi

establish
session keys
←→
...

possesses session keys possesses session keys
{Kencr , KMAC } {Kencr , KMAC }

{Kencr ,KMAC }
−→

begins typing possesses
{Kencr , KMAC }

c← EKencr
(input)

t← MACKMAC
(c)

c,t
−→

c,t
−→

if(VerifyKMAC
(t, c))

input ← DKencr
(c)

Figure 3: Simplified application execution and trusted tunnel establishment with registered BitE-aware application so
that the user can enter sensitive information to that application. In this figure we assume the user’s input device(s) is
an extension of the trusted mobile device, so we do not show input device(s). We also assume host platform / BitE
Mobile Client association (Section 3.3.1) and application registration (Section 3.3.2) have already been successfully
completed. input consists of padding, a sequence number, and the actual input event. TT = Trusted Tunnel.

applications that were initially registered are options for
trusted tunnel endpoints.

If the user is satisfied, she selects the option given by
her mobile device corresponding to the name of the ap-
plication with which she wants to establish a trusted tun-
nel. If she suspects anything is wrong, she selects the
Abort option on her mobile device. It is an error if the
user selects any application other than the one which is
currently requesting a trusted tunnel. That is, the BitE
Mobile Client will report an error to the user (the applica-
tion she selected from the list is not the same application
that requested a trusted tunnel). It is a policy decision to
decide how to handle this type of error. One approach is
to fail secure, and prevent the user from entering sensi-
tive input into her application until a successful retry.

Variations on this user interface that might also be ef-
fective in practice are discussed in Section 6.2.

4.1.3 Session Keys

At this point, the BitE Mobile Client has verified an at-
testation from the host platform, proving that the desired
application and the correct well-ordered system services
have been loaded. In addition, the user has selected the
same application on her mobile device that requested se-
cure input. To complete the encrypted, authenticated tun-
nel for input, session keys must be established.

Keys are established for encrypting and authenticating
user input-related communication to and from the BitE
Mobile Client. Even though user input is a one-way con-

cept, bidirectional communication is necessary to prop-
erly support complex key sequences such as auto-repeat
and Shift-, Control-, and Alt- combinations. The ses-
sion keys are derived from the per-application keys es-
tablished during application registration using standard
protocols [17].

The BitE Mobile Client uses the session keys to en-
crypt and MAC the actual keyboard events such that they
can be authenticated and decrypted by the BitE-aware
application in an end-to-end fashion. Our current proto-
type does not consider keystroke timing attacks [33, 35];
incorporation of countermeasures for such attacks is the
subject of future work.

Figure 3 presents step-by-step details on the process of
input via the BitE trusted tunnel. For simplicity, the fig-
ure shows user input as a one-way data flow. Kencr and
KMAC are the encryption and MAC keys for input data
flowing from the BitE Mobile Client to the application.

Once the trusted tunnel is established, the user can in-
put her sensitive data. When the application is finished
receiving sensitive input, it notifies the BitE Kernel Mod-
ule that it is finished receiving input via the trusted tun-
nel. At this point, the BitE Kernel Module tears down the
encrypted channel from the BitE Mobile Client to the ap-
plication, and reverts to listening for requests for trusted
tunnels from other registered applications. The BitE Mo-
bile Client notifies the user that the secure input session
has finished.

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association192



4.2 BitE-Unaware (Legacy) Applications

We now describe BitE operation with an application that
is unaware of the BitE system. That is, this section de-
scribes how BitE is backwards-compatible with existing
applications. Legacy applications were written without
knowledge of BitE, so there is no way for a legacy ap-
plication to request a trusted tunnel. Hence, all input to
a legacy application must go through a trusted tunnel.
The basic idea is that we run legacy applications inside a
wrapper application (the BitE-wrapper) that provides in-
put events to that application (e.g., stdin or X keyboard
events).

The legacy application is automatically measured by
the IMA, and it is registered with BitE in the same way
BitE-aware applications are registered. If the applica-
tion changes after its initial registration, the BitE Ker-
nel Module will not release the application-specific keys
necessary to establish session keys for encrypting and au-
thenticating keyboard events. Note that the application-
specific keys can be unsealed from sealed storage as long
as the measurements of the well-ordered system services
are as expected. Once the BitE Kernel Module has access
to the application’s keys, it will only release them to the
application if that application’s measurement matches
the expected value.

The most challenging part of interacting with a legacy
application is that it contains no BitE-aware component
that can handle the decryption and authentication of key-
board events. Instead, the BitE-wrapper does the decryp-
tion and authentication of keyboard events. It is neces-
sary to prevent the legacy application from receiving key-
board events from the window manager (or other user-
level processes), while allowing it to receive input from
the wrapper application. This is easy to achieve for con-
sole applications (e.g., just redirect stdin); however, it
is challenging for graphical applications. We now con-
sider the necessary BitE-wrapper functionality for X11
applications.

X11 applications (clients in the context of X) regis-
ter to receive certain types of event notifications from
the X server. Common event types include keyboard
press and release events. Applications register to receive
these events using the XSelectInput function. The
BitE-wrapper application can intercept this call for dy-
namically linked applications using the LD PRELOAD
environment variable. With LD PRELOAD defined to
a custom BitE shared library, the run-time linker will
call the BitE XSelectInput instead of the X11
XSelectInput. Thus, the BitE Kernel Module is
hooked into the application’s input event loop. The
BitE Kernel Module can generate its own input events
to send to the application simply by calling the callback
function that the application registered when it called
XSelectInput.

4.3 Handling Concurrent Trusted Tunnels
to Prevent User Confusion

While there are no technical difficulties involved in main-
taining multiple active trusted tunnel connections from
the BitE Mobile Client to applications, there are user-
interface issues. We know of no way to disambiguate
to the user which application is receiving input without
requiring user diligence. For example, a naive solution
is to display the name of the application for which user
input is currently being tunneled on the mobile device’s
screen. This requires the user to look at the screen of her
mobile device and ensure that the name matches that of
the application with which she is currently interacting.

To prevent user confusion, we force the user to interact
with one application at a time in a trusted way. If we al-
low users to rapidly switch applications (as today’s win-
dow managers do), then the binding of user intent with
user action is dramatically weakened. The rapid context
switching makes it easy for the user to become confused
and enter sensitive input into the wrong application. An
adversary may be able to exploit this weakness. Some
users may find this policy annoying; we discuss an alter-
native policy in Section 6.2.1.

We consider two example applications which we as-
sume to be BitE-aware and that require a trusted tunnel
for user authentication:

1. Banking software which requires the user to authen-
ticate with an account number and a password.

2. A virtual private network (VPN) client which re-
quires the user to authenticate with a username and
a password.

Suppose the user needs to interact with both applica-
tions at the same time, for example, to compare payroll
information from her company with entries in her per-
sonal bank account. In today’s systems, there is nothing
to cause the user to serialize her authentication to these
applications. She may start the banking software, then
start the VPN client, then authenticate to the banking
software, then authenticate to the VPN client. In the BitE
system, assuming the banking software and VPN client
are BitE-aware, the BitE Kernel Module considers this
behavior to be a concurrent request by two applications
for establishment of a trusted tunnel.

It is a policy decision how to handle concurrent trusted
tunnel requests. One option is to default-deny both appli-
cations, and alert the user to the contention. She can then
retry with one of the two applications, and use it first.
This forces the user to establish a trusted tunnel to the
first application and fully input her sensitive data to that
application. Once her data is input, the first application
will relinquish the trusted tunnel, and it will be torn down
by BitE. The user can then begin the process of entering
her sensitive data to the second application, which will
entail the establishment of another trusted tunnel. These
one-at-a-time semantics may induce some additional la-

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 193



tency for the user before she can begin using her appli-
cations, but we consider this to be an acceptable tradeoff
in light of the gains in security.

5 Security Analysis
In this section we analyze the security of BitE. During
the design of BitE, we tried to make it difficult for the
user to make self-destructive mistakes. For example, the
BitE Mobile Client will not allow the user’s keystrokes to
reach the BitE Kernel Module if verification of an attesta-
tion fails. The user must respond to messages displayed
on her mobile device before she can proceed. Security
mechanisms on the critical input path cannot go unno-
ticed by the user. These mechanisms must provide value
commensurate with the difficulty of using them.

We provide some examples of attacks that BitE is able
to protect against. We then consider the failure modes of
BitE when the assumptions upon which it is constructed
do not hold.

5.1 Defensed Attacks
We consider multiple scenarios where the use of BitE
protects the user.
Capturing Keystrokes with X Giampaolo shows how
easy it is for an attacker to use a malicious application to
capture the keystrokes the user intends to go to the active
(and assumed benign) application. If the user is using
BitE to enter sensitive data, however, this attack does not
work (see Figure 1). The user’s keystrokes are encrypted
and authenticated with session keys (as discussed in Sec-
tion 4) which are unavailable to the malicious applica-
tion. Hence, the encrypted keystrokes reach the user’s
desired application unobserved.
Software Keyloggers Software keyloggers are a signif-
icant threat. Sumitomo Bank in London was the victim
of a sophisticated fraud scam involving software keylog-
gers [27]. With BitE, the user’s keystrokes travel inside
encrypted, authenticated tunnels. Even if an adversary
can capture the ciphertext, he will be unable to extract
the keystrokes.
Bluetooth Eavesdropping BitE is most convenient for
the user when wireless communication mechanisms can
be used between the mobile device and the host. As
long as the initial exchange of public keys between the
BitE Mobile Client and the BitE Kernel Module pro-
ceeds securely, all communication between them can
be encrypted and authenticated using standard protocols.
If keystroke timing attack countermeasures are incorpo-
rated [33, 35], timing side-channels can also be elim-
inated. Since all communication is strongly authenti-
cated, an adversary will not be able to masquerade as
a valid BitE Mobile Client or BitE Kernel Module.
Modification of Registered Applications An attacker
may be able to modify (e.g., by exploiting a buffer over-
flow vulnerability in a different application) the binary
of a registered application. Such an attack may modify

the application’s executable such that it may log user in-
put to a file, or send it to a malicious party on the Inter-
net. With BitE, an IMA measurement of the executable
was recorded during initial application registration (re-
call Section 3.3.2). The modified application binary will
be detected during trusted tunnel setup when the BitE
Mobile Client tries to verify the attestation from the host
platform. The BitE Mobile Client will alert the user that
the application has been modified.
Kernel Modification A measurement of the kernel bi-
nary is part of the integrity measurement which is veri-
fied when a trusted tunnel is established. Modification of
the kernel image on disk will be detected after the next
reboot. As a disk-only modification of the kernel image
will not affect the running system until a reboot, the at-
tack is detected by the BitE Mobile Client before it can
affect the operation of BitE.

5.2 Failure Modes

We now describe what happens if the assumptions upon
which the security of BitE is based turn out to be invalid.
Specifically, we discuss the extent to which the failure
of our assumptions permit the attacker to perform one or
more of the following:

• To observe keystrokes in an ongoing session.
• To observe keystrokes in current and future ses-

sions.
• To register malicious applications.

Compromise of Active Application If the attacker is
able to compromise an application while the user has a
trusted tunnel established, he may be able to observe the
user’s keystrokes. This break is limited to the compro-
mised application, however, as the attacker has no way
to access keys established between the BitE Kernel Mod-
ule and other registered applications. This break is feasi-
ble because the adversary is exploiting a time-of-check,
time-of-use (TOCTOU) limitation of the integrity mea-
surement architecture (e.g., a buffer overflow attack). In-
corporation of mechanisms for run-time attestation (e.g.,
Pioneer [28]) can help defend against this attack.
Compromise of Active Kernel on Host Platform If the
operating system kernel on the host platform is compro-
mised without rewriting a measured binary (e.g., exploit-
ing TOCTOU limitations with a buffer overflow attack),
the attacker may be in a position to capture sensitive user
input despite the BitE system. This gives the attacker ac-
cess to K−1

KM and to the unique application keys KAppi
.

The attacker can also capture keystrokes from ongoing
sessions by reading the session keys out of the memory
space of the BitE Kernel Module or the applications.
Compromised Mobile Device Since the mobile de-
vice is used as a central point of trust in our system, its
compromise will allow an attacker to access all keyboard
events. The attacker will have possession of K−1

MC so
he may be able to masquerade as a trusted BitE Mobile

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association194



Client using an arbitrary device, such as one with a very
powerful radio transmitter. Further, the attacker will cap-
ture all registered applications’ unique keys, KAppi

for
application i, and user-friendly name. This will enable
the attacker to establish trusted paths with registered ap-
plications, and it will allow the attacker to register new
applications.
Hardware Keyloggers Malicious parties may use hard-
ware as well as software techniques to record users’
keystrokes. BitE is designed to protect against software-
based attacks. To protect against hardware-based attacks,
the user would need to carry their own keyboard as well
as their mobile device, which we consider to be an ex-
cessive burden. However, if the amount of sensitive data
that the user must enter is small, she can use BitE without
an external keyboard and enter her sensitive data directly
into her mobile device.

5.3 Mutual Attestation
Currently, there is no attestation technology available for
mobile devices. However, the TCG is currently work-
ing on trusted platform standards for mobile devices [36],
which may be able to minimize the severity of a mobile
device compromise. With such technology, it becomes
possible to implement mutual attestation in BitE, where
the host platform verifies an attestation from the mobile
device in addition to the mobile device verifying an at-
testation from the host platform.

Mutual attestation can increase an attacker’s work-
load, since compromising only the mobile device is no
longer a sufficient attack. To fully circumvent BitE, the
attacker would have to compromise both the BitE Mo-
bile Client and the user’s host platform. For example, the
BitE Mobile Client could store its secrets in sealed stor-
age, rendering them inaccessible to malicious software
installed on the mobile device by an adversary.

6 Discussion
In this section we discuss additional issues that arise
while using the BitE system. These issues include al-
ternative system architectures, e.g., elimination of the
trusted mobile device or TPM, and alternative user in-
terface designs for the BitE system.

6.1 Alternative System Architectures
The BitE system as presented in this paper is designed
around a TPM-equipped host platform and a trusted mo-
bile device. We briefly consider alternative design ap-
proaches, namely, designs that eliminate the mobile de-
vice or the TPM. It is particularly tempting to think that
one or both of these requirements may be unnecessary
since we include the OS kernel in the TCB for BitE. In
addition to its role as resource manager, we must trust
the OS kernel because of its ability to arbitrarily read
the memory space of any process executing on the sys-
tem. Other researchers have tried to quantify the extent

to which data is exposed by measuring the lifetime of
data in a system [7, 13]. In BitE, we minimize the data
lifetime of user input by minimizing the quantity of code
through which cleartext input passes.

6.1.1 Eliminating the Mobile Device
A significant challenge addressed by BitE is for the user
to obtain a user-verifiable property of the integrity of the
OS and application. It is important to recall two of the
roles the mobile device fulfills:

• Verification of integrity measurements from the host
platform.

• Trusted visual output to the user.

Integrity measurement on the host platform puts in
place the facility for verification by an external entity,
but the host platform cannot “self-verify.” In BitE, the
mobile device fulfills the role of the verifying entity. The
mobile device must have trusted visual output to the user
so it can appropriately notify the user of the success or
failure of this verification.

6.1.2 Input Proxying by the Mobile Device
The OS kernel on the user’s host platform is part of the
TCB when using BitE. With a trusted OS kernel, there is
no technical reason why user input must travel through
the mobile device. The BitE Kernel Module already pos-
sesses copies of the cryptographic keys shared with the
application, and it could encrypt user input from the tra-
ditional keyboard driver before it passes through the win-
dow manager. However, this design raises an important
usability issue. The mobile device must be on the crit-
ical input path so that it can ensure that the user cannot
proceed unaware of a failed integrity verification. We are
concerned that non-expert users will proceed to interact
with their application even if a message appears on the
mobile device stating that the system is compromised.
With the mobile device on the critical input path, it can
stop user input from reaching the application while also
providing secure feedback to the user.

6.1.3 TPM Alternatives
Finally, we discuss the extent to which the TPM is
an essential requirement for BitE. We could leverage
software-based attestation mechanisms to verify the au-
thenticity of the OS [28]. However, in open computing
environments, it may be challenging to satisfy the as-
sumptions underlying these techniques, e.g., that the ver-
ified device cannot communicate with a more powerful
computer during the attestation process. Still, software-
and hardware-based attestation mechanisms complement
each other. Hardware-based attestation mechanisms
can provide load-time guarantees, with software-based
mechanisms helping to ensure tamper-evident execution.
This reduces the threat posed by the TOCTOU vulnera-
bility of the IMA.

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 195



6.2 Alternative User Interfaces
An important property achieved by the BitE system is
that the user selects the registered application with which
she would like to establish a trusted tunnel from a list on
her trusted mobile device’s screen. We present two alter-
native operating models that may be more convenient for
the user, though they tradeoff the strength of the resulting
trusted tunnel.

6.2.1 Active Selection
As described in Section 4, BitE requires the user to select
an application from a list presented by the BitE Mobile
Client when a registered application requests a trusted
tunnel for input. An alternative structure, and one that
may be preferable for legacy applications, is one where
the user directs the BitE system to establish a trusted tun-
nel. One possibility for giving the user this ability is to
maintain a list of all registered applications on the BitE
Mobile Client. When the user wants to send secure input
to, e.g., OpenOffice Calc, she selects “OpenOffice Calc”
from the list on her mobile device.

This system has advantages for legacy applications
since they do not actively request a trusted tunnel for in-
put. BitE as described in Section 4.2 requires a legacy
application to receive all input through the trusted tunnel,
which may be inconvenient for the user if she wishes to
interact with a second application with a trusted tunnel
while her legacy application is still running (and using
the trusted tunnel).

The drawback of this Active Selection scheme is that it
requires user diligence. We are concerned about users
forgetting to manually enable the trusted tunnel when
they input sensitive data.

6.2.2 Always-On-Top
Another possible configuration for a trusted tunnel sys-
tem is one where the window manager is involved. In
this scenario, the BitE Mobile Client and the BitE Ker-
nel Module maintain multiple active sessions. The user’s
typing goes to whatever application the window manager
considers to be “on top.” This configuration for BitE is
problematic since the window manager becomes a part
of the TCB. Much of the motivation for BitE is that it is
able to remove the window manager from the TCB for
trusted tunnel input.

7 Prototype and Evaluation
In this section, we describe our proof-of-concept pro-
totype and evaluate some practical considerations nec-
essary for actually building BitE. We have developed a
J2ME MIDP 2.0 [19] BitE Mobile Client. It receives
keystrokes via an infrared keyboard and sends them via
Bluetooth to a prototype BitE Kernel Module loaded on
the host platform. We use the BouncyCastle Lightweight
Cryptography API for all cryptographic operations. Our
prototype is shown in operation in Figure 4.

Figure 4: Our prototype BitE system and a debugging
screenshot showing the prototype in operation.

The BitE Mobile Client consists of less than 1000 lines
of Java code, not including source code from libraries.
The BitE Kernel Module consists of approximately 500
lines of C and Java code which interacts with the BitE
Mobile Client via Bluetooth, the legacy input system via
the uinput kernel module, and the integrity measure-
ment architecture of Sailer et al. [26] via the /proc
filesystem.

7.1 Options for a Trusted Mobile Device
We decided to develop the BitE Mobile Client as a J2ME
application because of the wide variety of mobile devices
which support J2ME. In particular, millions of smart-
phones have already been sold which are capable of run-
ning the BitE Mobile Client. However, mobile phones
are continuously increasing in complexity and thus fea-
ture software vulnerabilities of their own. A recent study
places the number of existing worms and viruses for mo-
bile phones at approximately 90 [15]. While 90 is a
miniscule number when compared to the amount of mal-
code in circulation which affects desktop computing plat-
forms, it is still a significant figure when considering the
amount of trust BitE puts in the mobile device. Efforts
are ongoing to improve the security of mobile devices,
augmented by the experience gained working to secure
more traditional platforms [36]. Still, with today’s tech-
nology, BitE is best run on a dedicated device whose
software can only be upgraded under carefully controlled
conditions.

7.2 Encrypted Channel Setup Latency Be-
tween Mobile Device and Host

We have performed experiments to determine the over-
head associated with asymmetric cryptographic oper-
ations necessary to establish encrypted, authenticated
communication between a mobile phone and host. We
ran our J2ME MIDP 2.0 application on both a Nokia
6620 and a Nokia N70.

Establishing mutually authenticated communication
involves performing asymmetric signature and verifica-
tion operations at both communication endpoints. In our
experiments with 1024-bit RSA keys (see Table 1), sign-
ing operations take 1757 ms and 1332 ms on average

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association196



Action Nokia N70 Nokia 6620
Time (ms) Variance Time (ms) Variance

RSA PSS (sign) 1332 171 1757 297
RSA verify 40 63 54 31
SHA-1 aggregate 91 125 171 110
Data manipulation 906 1000 2087 703

Table 1: Average time (in milliseconds) to perform an RSA signature and verification with a 1024-bit key and a public
exponent of 65537; compute an aggregate hash of 401 (for the Nokia 6620) and 325 (for the Nokia N70) SHA-1
measurements from a Debian workstation running Linux kernel 2.6.12.5; and manipulate the IMA measurement list
data.

for a Nokia 6620 and Nokia N70, respectively. Signa-
ture verification averages 54 ms and 40 ms, respectively.
Thus, mutual authentication using either of these phones
will take on the order of 3 to 4 seconds, which is a no-
ticeable but tolerable delay. This is because these asym-
metric operations are only required for communication
setup. Once session keys are established, efficient sym-
metric primitives can be used for communication. The
Nokia N70 consistently outperforms the Nokia 6620, but
the margin is rather narrow.

7.3 Keyboard / Mobile Device Communi-
cation

We experimented with an infrared keyboard to provide
user input to the BitE Mobile Client, and a Bluetooth
connection from the BitE Mobile Client to the host plat-
form. This is because our development phones can
support only one Bluetooth connection at a time. The
use of an infrared keyboard is undesirable because the
keystrokes are transmitted in the clear. A better solution
is to use a keyboard that physically attaches to the mo-
bile phone. Alternatively, a Bluetooth keyboard capable
of authenticated, encrypted communication can be used.
We are unaware of any mobile phones available today
that support more than one active Bluetooth connection
simultaneously, but such devices may become available
in the near future.

We performed simple usability experiments to analyze
keystroke latencies, to ensure that BitE is not rendered
useless by excessive latency while typing. We observe
no noticeable latency with debug logging disabled. Use
of symmetric cryptographic primitives introduces min-
imal overhead per keystroke. For example, the use of
counter-mode encryption could enable the BitE Mobile
Client to precompute enough of the key stream so that the
only encrypt / decrypt operation on the critical path for a
keystroke is an exclusive-or [17]. This reduces the most
significant cryptographic per-keystroke operation to the
verification of a MAC (e.g., HMAC-SHA-1, [3, 4, 14]).
Our experiments below on verifying integrity measure-
ments indicate that SHA-1 operations can be performed
efficiently on the class of mobile phones we consider.

7.4 Verifying Attestations on the Mobile
Device

We have the open-source integrity measurement archi-
tecture (IMA) of Sailer et al. [26] running on our de-
velopment system. We have implemented the operations
necessary for the BitE Kernel Module to send the IMA
measurement list to the BitE Mobile Client, and for the
BitE Mobile Client to compute the PCR aggregate for
comparison with a signed PCR quote from the TPM. Ta-
ble 1 shows some performance results for our prototype
on a Nokia 6620 and N70. To validate an attested set of
measurements from the host platform, the measurement
list must be hashed for comparison with the signed PCR
aggregate. For a typical desktop system, this involves
hundreds of hash operations. Our experiments show that
the average time necessary to compute a SHA-1 hash of
325 measurements (the number of measurements our de-
velopment system had performed at the time of the ex-
periment), 91 ms on the N70, is far less than the time
necessary to manipulate the data from the measurement
list—906 ms. In this experiment, the Nokia N70 is bound
by memory access and not CPU operations. Our results
show that the expected time for a Nokia N70 to verify an
attestation (check the signature on the aggregate values
from the PCRs, hash the measurement list, and compare
the aggregate hash from the measurement list to the ap-
propriate PCR value) is approximately 2 seconds, which
will decrease with future devices. See Table 1 for the
results from a corresponding experiment run on a Nokia
6620.

8 Conclusions
Bump in the Ether is a system that uses a trusted mo-
bile device as a proxy between a keyboard and a TPM-
equipped host platform to establish a trusted tunnel for
user input to applications. The resulting tunnel is an end-
to-end encrypted, authenticated tunnel all the way from
a user’s mobile device to an application running on the
host platform. BitE places specific emphasis on these
design issues: (1) malware such as software keyloggers,
spyware, and Trojans running at user level will be un-
able to capture the user’s input; (2) operation of BitE is
convenient and intuitive for users; (3) BitE is feasible to-
day on commodity hardware; and (4) BitE offers some
protection for legacy applications.

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 197



9 Acknowledgements

We are grateful to Reiner Sailer and Leendert van Doorn
for their assistance with the Integrity Measurement Ar-
chitecture. We would also like to thank the anonymous
reviewers for their valuable feedback.

This work was supported in part by National Science
Foundation award number CCF-0424422.

References
[1] D. Balfanz and E. W. Felten. Hand-held computers can be better

smart cards. In Proccedings of the USENIX Security Symposium,
August 1999.

[2] D. Balfanz, D.K. Smetters, P. Stewart, and H. C. Wong. Talking
to strangers: Authentication in ad-hoc wireless networks. In Pro-
ceedings of the Symposium on Network and Distributed Systems
Security, February 2002.

[3] M. Bellare, R. Canetti, and H. Krawczyk. Keyed hash functions
and message authentication. In Proceedings of Crypto, pages 1–
15, 1996.

[4] M. Bellare, T. Kohno, and C. Namprempre. SSH transport layer
encryption modes. Internet draft, August 2005.

[5] J. L. Berger, J. Picciotto, J. P. L. Woodward, and P. T. Cummings.
Compartmented mode workstation: Prototype highlights. Soft-
ware Engineering, 16(6):608–618, June 1990.

[6] M. Carson and J. Cugini. An X11-based Multilevel Window Sys-
tem architecture. In Proceedings of the EUUG Technical Confer-
ence, 1990.

[7] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosen-
blum. Understanding data lifetime via whole system simula-
tion. In Proceedings of the USENIX Security Symposium, August
2004.

[8] J. Epstein. A prototype for Trusted X labeling policies. In
Proceedings of the Sixth Annual Computer Security Applications
Conference, December 1990.

[9] J. Epstein and J. Picciotto. Issues in building Trusted X Window
Systems. The X Resource, 1(1), Fall 1991.

[10] J. Epstein and J. Picciotto. Trusting X: Issues in building Trusted
X window systems -or- what’s not trusted about X? In Proceed-
ings of the 14th Annual National Computer Security Conference,
October 1991.

[11] G. Faden. Reconciling CMW requirements with those of X11 ap-
plications. In Proceedings of the 14th Annual National Computer
Security Conference, October 1991.

[12] A. O. Freier, P. Karlton, and P. C. Kocher. The SSL protocol:
Version 3.0. Internet draft, Netscape Communications, Novem-
ber 1996.

[13] T. Garfinkel, B. Pfaff, J. Chow, and M. Rosenblum. Data life-
time is a systems problem. In Proceedings of the ACM SIGOPS
European Workshop, September 2004.

[14] P. Jones. RFC 3174: US secure hash algorithm 1 (SHA1),
September 2001.

[15] N. Leavitt. Will proposed standard make mobile phones more
secure? IEEE Computer, 38(12):20–22, 2005.

[16] J. M. McCune, A. Perrig, and M. K. Reiter. Seeing-is-Believing:
Using camera phones for human-verifiable authentication. In
Proceedings of the IEEE Symposium on Security and Privacy,
May 2005.

[17] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Hand-
book of Applied Cryptography. CRC Press Series on Discrete
Mathematics and its Applications. CRC Press, 1997.

[18] Microsoft Corporation. Next generation secure comput-
ing base. http://www.microsoft.com/resources/
ngscb/, April 2006.

[19] Sun Microsystems. Mobile information device profile (MIDP)
version 2.0, April 2006.

[20] B. A. Myers. Using handhelds and PCs together. Communica-
tions of the ACM, 44(11), November 2001.

[21] J. Picciotto. Towards trusted cut and paste in the X Window Sys-
tem. In Proceedings of the Seventh Annual Computer Security
Applications Conference, December 1991.

[22] J. Picciotto and J. Epstein. A comparison of Trusted X security
policies, architectures, and interoperability. In Proceedings of
the Eighth Annual Computer Security Applications Conference,
December 1992.

[23] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper.
Virtual network computing. IEEE Internet Computing, 2(1):33–
38, 1998.

[24] D. S. H. Rosenthal. LInX—a Less INsecure X server (Sun Mi-
crosystems unpublished draft).

[25] S. J. Ross, J. L. Hill, M. Y. Chen, A. D. Joseph, D. E. Culler, and
E. A. Brewer. A composable framework for secure multi-modal
access to Internet services from post-PC devices. Mobile Network
Applications, 7(5):389–406, 2002.

[26] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and
implementation of a TCG-based integrity measurement architec-
ture. In Proceedings of the USENIX Security Symposium, 2004.

[27] J. Scott-Joynt. The enemy within. BBC News, Avail-
able at: http://news.bbc.co.uk/2/hi/business/
4510561.stm, May 2005.

[28] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and
P. Khosla. Pioneer: Verifying integrity and guaranteeing exe-
cution of code on legacy platforms. In Proceedings of ACM Sym-
posium on Operating Systems Principles, October 2005.

[29] J. S. Shapiro, J. Vanderburgh, E. Northup, and D. Chizmadia.
Design of the EROS trusted window system. In Proceedings of
the USENIX Security Symposium, 2004.

[30] R. Sharp, A. Madhavapeddy, R. Want, T. Pering, and J. Light.
Fighting crimeware: An architecture for split-trust web applica-
tions. Technical Report to appear, Intel Research Center, 2006.

[31] R. Sharp, J. Scott, and A. Beresford. Secure mobile computing
via public terminals. In Proceedings of the International Confer-
ence on Pervasive Computing, May 2006.

[32] E. Shi, A. Perrig, and L. van Doorn. BIND: A time-of-use attes-
tation service for secure distributed systems. In Proceedings of
IEEE Symposium on Security and Privacy, May 2005.

[33] D. X. Song, D. Wagner, and X. Tian. Timing analysis of
keystrokes and timing attacks on SSH. In Proceedings of the
USENIX Security Symposium, 2001.

[34] F. Stajano and R. Anderson. The resurrecting duckling: Secu-
rity issues for ad-hoc wireless networks. In Proceedings of the
Security Protocols Workshop, 1999.

[35] J. T. Trostle. Timing attacks against trusted path. In Proceedings
of the IEEE Symposium on Security and Privacy, May 1998.

[36] Trusted Computing Group. Security in mobile phones whitepa-
per, October 2003.

[37] Trusted Computing Group. Trusted platform module main spec-
ification, Part 1: Design principles, Part 2: TPM structures, Part
3: Commands, October 2003. Version 1.2, Revision 62.

[38] J. P. L. Woodward. Security requirements for system high
and compartmented mode workstations. Technical Report MTR
9992, Rev. 1, The MITRE Corporation, November 1987.

[39] The XFree86 project, Inc. http://www.xfree86.org/,
April 2006.

[40] The X.Org foundation. http://www.x.org/, April 2006.
[41] L. Zhuang, F. Zhou, and J. D. Tygar. Keyboard acoustic em-

anations revisited. In Proceedings of the ACM Conference on
Computer and Communications Security, October 2005.

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association198




