
Shamon: A System for Distributed Mandatory Access Control

Jonathan M. McCune∗ Trent Jaeger Stefan Berger Ramón Cáceres Reiner Sailer
Carnegie Mellon University Pennsylvania State University IBM T. J. Watson Research Center

jonmccune@cmu.edu tjaeger@cse.psu.edu {stefanb,caceres,sailer}@us.ibm.com

Abstract

We define and demonstrate an approach to securing dis-

tributed computation based on a shared reference monitor

(Shamon) that enforces mandatory access control (MAC)

policies across a distributed set of machines. The Shamon

enables local reference monitor guarantees to be attained

for a set of reference monitors on these machines. We im-

plement a prototype system on the Xen hypervisor with

a trusted MAC virtual machine built on Linux 2.6 whose

reference monitor design requires only 13 authorization

checks, only 5 of which apply to normal processing (others

are for policy setup). We show that, through our architec-

ture, distributed computations can be protected and con-

trolled coherently across all the machines involved in the

computation.

1. Introduction

Recent advances are bringing flexible mandatory access

control (MAC) to commercial systems, such as Linux [34]

and FreeBSD [37], but it does not appear to be straight-

forward to extend these systems to a distributed security

architecture. Previous distributed security architectures,

such as those based on Taos [1, 6], Kerberos [21, 27], trust

management [10, 13, 23, 24], and grid computing [14, 38]

have had successes, but are limited by the lack of dis-

tributed trust and by enforcement complexity. They lack

a basis for establishing that all the machines in the dis-

tributed environment have trustworthy enforcement mech-

anisms and are configured to enforce the proper MAC pol-

icy. These architectures also control resources at a fine

granularity, such as individual files, which results in com-

plex enforcement mechanisms and MAC policy specifica-

tions. The emerging MAC enforcement mechanisms, such

as SELinux, do not address overall system trust and have

significant complexity, so it seems likely that extending

these architectures directly will result in the same prob-

lems. We aim to define a distributed systems security ar-

chitecture that provides trust in enforcement and limits the

complexity of enforcement.

Figure 1 illustrates our high-level goal. A distributed

application consists of a coalition of virtual machines

∗This work was done during an internship at IBM Research.

(VMs) that execute across a distributed system of physi-

cal machines. Each of the coalition VMs may reside on

a different physical machine, and multiple coalitions may

execute on each physical machine. The physical machines

each have a reference monitor capable of enforcing MAC

policies over its VMs. However, to the individual coali-

tions, the combination of reference monitors forms a co-

herent, uniform unit that protects the coalition from other

coalitions and limits the actions of the coalition VMs. We

call the result of this sharing of reference monitors, whose

mutual trust can be verified, a Shamon. As VMs are added

or migrate to new machines, the Shamon is verified to en-

sure its trustworthiness.

In this paper, we introduce a Shamon approach for

MAC enforcement across distributed systems that requires

a very small amount of reference monitoring function on

each machine, thus enabling trust in this function to be ver-

ifiable over the entire distributed system. MAC enforce-

ment is simplified by using a small virtual machine mon-

itor (VMM) as the base code and relying on minimal op-

erating system controls. The Xen hypervisor system is our

VMM [5], and we only depend on it for inter-VM controls

which are available through only two Xen mechanisms:

grant tables (shared memory), and event channels (syn-

chronous channels). Xen provides system services (such

as hardware and guest virtual machine controls) through a

single trusted VM that at present runs a complete operating

system (Linux). However, we find that MAC enforcement

only requires that the trusted VM control network com-

munication. We use only the SELinux controls for IPsec

and packet processing (seven hooks) to perform MAC en-

forcement in the trusted VM. As a result, the enforcement

of only 13 total authorizations (combined from Xen and

SELinux) are needed from the reference monitors.

Trust in the MAC enforcement capabilities of a remote

system is established using remote attestation [26, 35]. We

use remote attestation to enable each machine to verify

the following properties of the reference monitoring in-

frastructure: tamperproofing (i.e., code and communica-

tion integrity), mediation (e.g., effective MAC enforce-

ment mechanisms), and the satisfaction of security goals

(e.g., isolation from other workloads) in a distributed en-

vironment. We can extend this trust up to the target VM

Untrusted
network

Coalition

Physical Machine

VM

VM
VM

Physical Machine

Physical MachinePhysical Machine

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VMVM

Untrusted
network

Coalition

Physical Machine

VMVM

VMVM
VMVM

Physical Machine

Physical MachinePhysical Machine

VMVM

VMVM

VMVM

VMVM

VMVM

VMVM

VMVM

VMVM

VMVM

VMVM

VMVM

VMVMVMVM

Figure 1. Example of a distributed coalition.

Virtual machine (VM) instances sharing common

Mandatory Access Control (MAC) labels on multi-

ple physical hypervisor systems are all members of

the same coalition.

(i.e., the VM that provides application services) through

attestation as well.

The contributions in this work are:

1. a system built from open-source software components

that enables enforcement of MAC policies across a set

of machines;

2. complete MAC reference monitoring from two soft-

ware layers, (1) the Xen hypervisor that controls

inter-VM resource accesses, and (2) SELinux and

IPsec network controls; and

3. the use of attestation to build trust in the reference

monitoring across all machines in a distributed sys-

tem.

We demonstrate this implementation by applying it to

a BOINC distributed computing application [2]. The

BOINC infrastructure enables distributed computations by

a group of clients coordinated by a server, such as the

SETI@home volunteer distributed computing effort [3].

We run a BOINC server and its clients in VMs. The refer-

ence monitors of each of the machines hosting the BOINC

VMs perform a mutual verification of acceptable reference

monitoring software and MAC policy. Then, each of these

reference monitors enforces the isolation of the BOINC

VMs from others and protects other coalitions from the

BOINC VMs. We describe how the Shamon approach en-

ables verification of trust and MAC-enforced isolation.

The rest of this paper is organized as follows. Section 2

surveys related work and provides background motivation

for the problem of building a Shamon. Section 3 presents

the architecture of our Shamon, and Section 4 describes

our prototype implementation. Section 5 presents an ex-

perimental evaluation of the security features of our proto-

type implementation, while Section 6 discusses some out-

standing issues and areas for future work. Finally, Sec-

tion 7 offers our conclusions.

2. Background and Related Work

We examine the two main issues in building a secure

distributed system: complexity and trust. Previous systems

meet one or the other of the these requirements, but not

both.

Complexity. We define MAC enforcement complexity in

terms of the number of unique operations in the system

that require mediation and the number of statements nec-

essary to describe the MAC policy. In most systems, MAC

enforcement is done by an operating system, but the fine

granularity of system objects and the variety of applica-

tions that need to be controlled result in complex MAC en-

forcement. Extending this approach directly to distributed

systems is not practical.

Current operating systems capable of enforcing MAC,

such as Trusted Solaris [36], SELinux [34], and

FreeBSD [37], leverage the finest granularity of control of-

fered by the operating system, where individual labels are

associated with processes (for subjects) and files (for ob-

jects). While such control enables us to reason about the

security of our systems in the most flexible manner, it does

not appear that such fine-grained control will scale to dis-

tributed systems or that it is necessary for such systems.

First, fine-grained controls require more complex refer-

ence monitor designs, such as the Linux Security Mod-

ules (LSM) framework [39], resulting in both large MAC

policies (e.g., the 30,000 policy statements in an SELinux

strict policy) and the challenge of mapping system objects

to their labels. Second, current Mandatory Access Control

systems use a prohibitively large number of operating sys-

tem hooks (on the order of hundreds). MAC policies for

these systems depend on details of the particular system,

making enforcement across a distributed system difficult.

By comparison, our system leverages virtualization so that

MAC policies can be largely system-independent, result-

ing in significantly fewer required mediation points.

Therefore, we propose to move from the fine-grained

controls of operating systems to an architecture that con-

trols communication between applications. The proposed

approach uses a virtual machine architecture to control

communication. While this architecture provides isolation

between applications running in separate virtual machines

(VMs), our approach enables flexible control of communi-

cation at the virtual machine-level, such that any inter-VM

communication can be flexibly allowed or denied. Such

a mechanism enables the composition of VM coalitions

where member VMs communicate within the coalition and

have limited communication with external VMs. We find

that enforcement is possible with few enforcement points

(5 hooks for enforcement) where we can specify MAC

policies (e.g., Type Enforcement [11] or Multi-Level Se-

curity (MLS) [7]) at the VM level.

Virtual machines are not a new technology and have

long been used for security, but we make several improve-

ments to current systems. First, compared to VM isolation

technologies [29], we enable not only VM isolation, but

also flexible, but controlled, communication across sys-

tems. Second, compared to VM systems with integrity ver-

ification for trust (e.g., Terra [15]), we define a complete

MAC enforcement mechanism and basic MAC policies for

distributed systems. Terra only provides a placeholder for

controlling access. Third, we define VM access control at

the lowest levels of the system. This contrasts with Net-

Top [25] which uses a virtual machine monitor (VMWare)

and operating system with MAC support (SELinux) to en-

able what were traditionally physically separate computer

terminals on the desks of government employees to be

consolidated onto a single system. The NetTop architec-

ture relies extensively on the security controls of the host

OS, which we have already shown to suffer from exces-

sive complexity. Finally, our approach takes a pragmatic

approach to the security ideals of the VAX VMM [18]

and KVM/370 [32] systems, where we provide high per-

formance and flexible function with similar security con-

trols. While we do not provide covert channel controls, we

can prevent the execution of conflicting VMs on the same

physical platform where this is a concern.

Trust establishment. Something that has been lacking in

distributed systems, historically, has been a practical basis

for trust in the distributed enforcement mechanism. For

building a coalition, we must establish trust in the MAC

enforcement of each member of the coalition, and we must

verify that the MAC policy being enforced on each ma-

chine supporting the coalition is consistent with the coali-

tion’s security goals (e.g., secrecy and integrity).

Previous distributed security architectures depend im-

plicitly on a trusted computing base without any practical

basis for this trust. For example, trust management sys-

tems [10, 13, 23, 24] compute authorizations, but we have

no basis to trust that these functions are performed cor-

rectly.

Within a single administrative domain, trust is often as-

sumed because all the systems are under the same admin-

istrative control. However, it is possible that some of the

machines in the domain have been compromised or mis-

configured. Typically, no effort is made to verify the cor-

rectness of MAC enforcement beyond software updates.

The bootstrapping of trust in a distributed security ar-

chitecture is described for the Taos system [22]. In this

system, a preliminary form of secure boot [4] is proposed

where at each step in the boot sequence the current system

verifies the integrity of the next step prior to starting its

execution. We agree with the requirement of building trust

bottom-up, but this work lacked a mechanism to prove trust

to remote parties in the distributed application. Further, we

also focus on achieving security guarantees via MAC poli-

cies, where Taos supported discretionary delegation.

We leverage remote attestation as a basis for building

trust in distributed enforcement. While much prior work

has been done on remote attestation [26, 35], complex-

ity of software and policy have rendered attestations less

meaningful than desired on existing systems. For exam-

ple, Terra [15] is a VMM-based architecture for provid-

ing isolation and includes attestation support. Today, the

Xen hypervisor system [5] with Trusted Platform Module

(TPM) support [9], enables the solution we present here to

enforce mandatory security policies between VMs and to

establish trust into the VM management environment, both

of which are not addressed by Terra.

The challenges in this work are to determine how to es-

tablish trust in a set of machines that participate in a coali-

tion. In particular, we must be able to attest to the enforce-

ment mechanisms of each machine and the consistency of

MAC policy enforcement throughout the coalition. This

will ensure that each system has a trusted mechanism to

enforce MAC requirements, that the MAC requirements

are met at each site in the coalition, and that there is a con-

sistent labeling of objects across the coalition systems.

3. System Architecture

In this section, we describe the system architecture for

a Shamon and examine its ability to achieve the guarantees

of a host reference monitor across a distributed environ-

ment. We begin by providing a high-level overview of our

architecture (Section 3.1). Then, the process of extending

the Shamon is presented, thereby establishing a bridge be-

tween two systems (Section 3.2).

3.1. Architecture Overview

The goal of our architecture is to enable the creation of

distributed coalitions of VMs, as shown earlier in Figure 1.

Sailer et al. define a coalition as a set of one or more user

VMs that share a common policy and are running on a sin-

gle hypervisor system with MAC [30]. We extend the defi-

nition of a coalition to include VMs on physically separate

hypervisor systems which share a common MAC policy.

The resulting distributed coalition has a MAC policy en-

forced by a Shamon.

We have designed a Shamon that builds trust in layers,

bottom-up, starting from trusted hardware like the Trusted

Computing Group’s Trusted Platform Module (TPM). Af-

ter the BIOS and boot firmware, the bottom-most software

layer is a VMM which is capable of enforcing a coarse-

grained (hence low complexity) MAC policy regarding in-

formation flows between isolated VMs. The VMM code-

base is substantially smaller than that of a host OS (tens of

thousands of lines of code, as opposed to millions, using

Xen and Linux as examples), bringing us closer to practi-

cal formal verification for assurance. Note that we have not

formally verified the implementation that we describe later

in the paper, but that our architecture lends itself to making

the most security-critical components as small as possible,

MAC System

Trusted
Computing

Base

Ref
Mon

MAC System

Trusted
Computing

Base

Ref
Mon

VM VM

...
VM VM

Shamon for all VMs

Figure 2. The Shamon approach results in a con-

ceptually singular reference monitor which is shared

across all machines in the distributed system. Indi-

vidual machines have assurance that other machines

are enforcing the desired MAC policy.

thereby helping to alleviate security-relevant dependencies

on components of excessive complexity. A MAC VM and

MAC policy attestation complete the establishment of Sha-

mon trust. The complexity required of these components

can be a significant improvement over host OS-only MAC.

The resulting system is shown conceptually in Figure 2;

the entire distributed system functions as if there is one

reference monitor which enforces the necessary policy on

all members of the distributed system. In order to build

a reference monitor across machines, we must enable ver-

ification of its tamperproof protections and its mediation

abilities, and that verification of the correctness of its im-

plementation and MAC policies is practical.

Figure 3 summarizes the primary concepts in our archi-

tecture: (1) hypervisors are VMMs that run on a single

physical machine and enforce the common MAC policy

for VM-to-VM communications on that machine; (2) MAC

VMs enforce the common MAC policy on inter-VM com-

munication across machines; and (3) secure, MAC-labeled

tunnels provide integrity protected communication which

is also labeled for MAC policy enforcement; (4) user VMs

implement application function; (5) coalitions consist of

a set of user VMs implementing a distributed application;

(6) a Shamon consisting of the combination of reference

monitors for all machines running user VMs in a single

coalition; and (7) common MAC policies define MAC poli-

cies for a single Shamon.

Hypervisors and MAC VMs. The hypervisor and MAC

VM comprise the reference monitoring components on a

single physical machine. The hypervisor controls user VM

communication local to that machine, and the MAC VM

controls inter-machine communications.

MAC-labeled tunnels. Inter-machine communication is

implemented via secure, MAC-labeled communication

tunnels. The Shamon constructs secure communication

tunnels between physical machines to protect the secrecy

and integrity of communications over the untrusted net-

work between them. Further, the tunnel is labeled, such

that both endpoint reference monitors in the Shamon can

Shared Reference Monitor

Secure MAC-
Labeled Tunnel

Common

MAC

Policy

Physical Machine

Hypervisor with MAC

MAC VM MAC VM
USER�
 VM

USER�
 VM

Physical Machine

Hypervisor with MAC

Figure 3. Example of a Shamon.

control which user VMs can use which tunnels.

User VMs and coalitions. User VMs represent applica-

tion processing units. Typically, a user VM will belong

to one coalition and inherit its label from that coalition.

For example, a set of user VMs that may communicate

among themselves, but are isolated from all other user

VMs, would form a coalition. Each user VM runs un-

der the same MAC label, and all have read-write access

to user VMs of that label. We note that other access con-

trol policies are possible within a coalition. In another

case, the coalition user VMs can be labeled with secrecy

access classes where interaction is controlled by the Bell-

LaPadula policy [8].

Special user VMs may be trusted to belong to multiple

coalitions, such as the MAC VM that is accessible to all

coalitions. These have a distinct label that conveys rights

in the common MAC policy to access multiple coalitions.

Shamon. A coalition’s reference monitor is a Shamon.

It consists of the union of the reference monitors for the

physical machines upon which coalition’s user VMs run

(see Figure 2).

Common MAC policies. The common MAC policy of

a coalition is the union of the MAC policies of the refer-

ence monitors in a coalition’s Shamon. The common MAC

policy must ensure MAC properties (e.g., isolation) of its

coalition in the context of the other user VMs from other

coalitions that may also be present on the Shamon’s phys-

ical machines.

The combination of the above concepts forms a shared

reference monitor system. The architecture must enable

composing and extending Shamons as new machines join,

an act that we call bridging. The key step is the establish-

ment of trust in the resultant Shamon.

3.2. Setting up a Bridge

When a user VM of a system joins a coalition, its ref-

erence monitor (components of the VMM and MAC VM

on the joining system) bridges with the coalition’s Sha-

mon. In our implementation, a reference monitor that is

already a coalition member serves as a representative for

the coalition. The following steps are necessary to com-

plete the bridging process: (1) the new reference moni-

tor needs to obtain the coalition’s configuration: its MAC,

secure communication, and attestation policies; (2) using

the attestation policies, the joining reference monitor and

the Shamon mutually verify that their policy-enforcement

(tamper-responding and mediating) abilities are sufficient

for the bridging; (3) the new user VM is initialized; and

(4) the secure, MAC-labeled network communication of

the bridge is enabled. Each of the four stages of the bridg-

ing process are now described in detail.

Stage 1: Establish common MAC policy. A new ref-

erence monitor joining the coalition, the joining reference

monitor (JRM), will affect MAC policy in two ways: (1)

the JRM will add the coalition label and its rights to its lo-

cal MAC policy, and (2) the Shamon common MAC policy

will become the union of the JRM’s and former Shamon’s

MAC policies. First, the JRM must verify that the resul-

tant coalition policy is compatible with its current policy

(e.g., does not violate isolation guarantees of its other lo-

cal coalitions). Second, the resultant Shamon policy now

includes that of the JRM to ensure that overall coalition

security goals can be enforced.

We present two different ways that the JRM can obtain a

coalition’s common MAC policy. First, the JRM may have

its own MAC policy and a means for translating coalition

MAC policy to its labels. This is necessary because the

semantics of a particular label (e.g., green) in the JRM’s

existing configuration may map to those of another label

(e.g., blue) in the distributed coalition. In a coalition that

uses a single label, the label name may be translated to

one the JRM understands. Using simple name translation,

coalitions may easily interact, but effort is required to pre-

define a universal label semantics and syntax into which

coalition labels of the local system can be translated.

A second option is to have the distributed reference

monitor push a configuration to the JRM and have the

JRM enforce coalition-specific policies. In this case, the

labels and flows implied by the MAC policy are defined by

the coalition’s Shamon. A problem here is that two coali-

tions may use the same label (e.g., blue) to mean different

things. The coalitions will have to determine which la-

bels are internal to the coalition (i.e., isolated) and which

may have information flows (i.e., the labels are global or

known to other specific coalitions). Our prototype uses the

first approach, so the MAC policy is fixed at the hypervisor

level and coalition policies are mapped to it.

Further, the coalitions must ensure that objects are la-

beled consistently across the coalition. If objects are la-

beled blue on one system, but objects with same security

semantics are labeled green on another system, then prob-

lems can ensue. At present, we download user VMs and

objects for the coalition at join time, so labeling is deter-

mined consistently by the coalition.

Stage 2: Confirm tamper-responding and mediating

abilities. An attestation policy is used to mutually verify

JRM and Shamon tamper-responding and mediation abil-

ities. We require attestations of the hypervisor and MAC

VM code, as well as the MAC policy each system has used.

This identifies the initial state of the system, its isolation

mechanism, its reference monitoring mechanism, and the

security goals that will be enforced via the MAC policy.

Our prototype, which we describe in Section 4, attests to

the Xen hypervisor code, MAC VM code, and the MAC

policy.

Stage 3: Initialize user VM. The code to be executed

inside the user VM is assigned a MAC label based on at-

testation of the code (e.g., green). In the context of the

BOINC example, the BOINC server may want an attesta-

tion that the BOINC client was started as expected. In that

case, attestation may be applied at the user VM level to

prove to the BOINC server which code was used. An ad-

ditional optimization is to have the BOINC server provide

the code for the entire user VM (i.e., the OS image as well

as the BOINC client software).

Stage 4: Secure, labeled communication. We construct

a secure, MAC-labeled tunnel for the bridge in the MAC

VM. The secure communication policy is selected when

the user VM attempts to communicate with a coalition

member and determines the secrecy and integrity require-

ments of the communication (e.g., AES encryption with

keyed-hash message authentication code integrity protec-

tion) as well as the MAC label for the tunnel. The MAC

label determines which endpoint VMs have access to the

tunnel. For example, a green user VM may have access

to green tunnels and only to green tunnels, so an isolated

coalition can be constructed. Our prototype uses the MAC-

labeled Linux IPsec implementation in the MAC VM to

construct and control access to tunnels for user VMs.

4. Implementation

We implemented a Shamon for volunteer distributed

computation according to the design presented in the pre-

vious section. This section describes our implementation

in detail. It starts with a description of the hardware and

software configuration of our prototype. It continues with

descriptions of how we implemented secure, MAC-labeled

tunnels for network communication; type mapping and

MAC enforcement for the reference monitor; and integrity

measurement for attestation.

4.1. Machine Configuration

We configured two hypervisor systems running Xen [5]

with sHype [30], shype1 and shype2. shype1 runs

one or more BOINC clients, each in its own user VM.

shype2 runs a dedicated BOINC [2] server inside a non-

privileged user VM. The supervisor domain in each Xen

system runs Fedora Core 4 with SELinux [34] configured

in strict mode. These supervisor domains serve as the

MAC VMs and perform the necessary policy translations

from SELinux labels on an IPsec tunnel [19, 20] to local

Physical Machine 2

Prototype Shamon

SELinux-Labeled�

IPsec Tunnel

Xen Hypervisor w/ sHype MAC

SELinux

Standard�

Linux

Physical Machine 1

Xen Hypervisor w/ sHype MAC

SELinux

BOINC�

server�
Apache,�

MySql, PHP

BOINC�

client

Standard�

Linux

domU User VM

dom0 MAC VM dom0 MAC VM

domU User VM

Figure 4. Bridging the shared reference monitor

(Shamon) in our distributed computing prototype.

sHype labels, and vice versa. Our implementation is based

on a Simple Type Enforcement (STE) policy, where Xen

VMs can share resources and data only if they have been

assigned a common STE-type. Figure 4 shows the struc-

ture of our prototype.

sHype MAC in Xen. The foundation of a Shamon is

sHype, a hypervisor security architecture for different

virtual machine monitors [30]. sHype provides simple,

system-independent and robust security policies and en-

forcement guarantees within the boundaries of a single

VMM. sHype deploys mandatory access control policies

enforced independently of the controlled virtual machines.

It offers two policy components: a Simple Type Enforce-

ment policy (STE) that controls the sharing of resources

(e.g., network, block devices) between different VMs, and

a Chinese Wall [12] policy (CHWALL) that controls which

VMs can run simultaneously on the same system. We did

not use CHWALL policy in our experiments, but our Sha-

mon architecture supports its use.

The STE policy component controls sharing between

virtual machines by controlling access of virtual machines

to VM-to-VM communication, and to any virtual re-

sources through which VMs can share information indi-

rectly. Conceptually, the STE policy creates coalitions of

VMs and assigns VM and resource memberships to coali-

tions. Treating both VMs and virtualized hardware re-

sources equally as generic resources, access control deci-

sions using STE are based on common coalition member-

ship.

Device driver and MAC VMs on Xen. We built and

maintain our Shamon prototype on the current unsta-

ble development version of Xen 3.0: xen-unstable.

While one of the design goals for Xen 3.0 is the abil-

ity to assign various physical resources to device driver

VMs, such functionality is not currently implemented by

xen-unstable. When xen-unstable boots, it starts

a special privileged VM with ID 0 called domain 0, or

dom0. dom0 has access to all devices on the system, thus,

in our prototype, we have only one device driver VM –

dom0.

Our configuration of xen-unstable has sHype en-

abled and enforces a Simple Type Enforcement (STE) pol-

icy. dom0 runs SELinux and serves as the MAC VM that

does policy translation between the labeled IPsec tunnel

and local sHype types. The SELinux policy needed on

dom0 is significantly smaller than an SELinux policy for

a typical Linux distribution, as it deals primarily with net-

working controls.

User VMs on Xen. The domU on shype2 runs Fedora

Core 4 and consists of installations of Apache, MySQL,

PHP, and the BOINC server software. The BOINC server

issues compute jobs to clients, collects and tabulates re-

sults, and makes status information available via the web-

site it hosts.

The domU on shype1 runs Fedora Core 4 and the

BOINC client software. The BOINC client accepts com-

pute jobs from the BOINC server, runs them, and returns

the results.

4.2. Labeled IPsec Tunnels

The labeled IPsec tunnel(s) between machines in a dis-

tributed coalition provide authenticated, encrypted com-

munication while conveying MAC type information. We

use labeled IPsec [17] operating in tunnel-mode [20] as

the secure communication mechanism between the dom0s

(MAC VMs) on shype1 and shype2. We describe the

processing of packets arriving at a dom0 from a remote

system and destined for a local domU; processing is sym-

metric in the opposite direction, when packets arrive at a

dom0 from a local domU and destined for a remote system.

Packets arrive in dom0 having come in over the la-

beled IPsec tunnel from another machine in the distributed

coalition. The first check is that these packets are des-

tined for some domU on the local hypervisor system (pack-

ets with any other destination are silently dropped using

iptables rules in dom0).

The packets in a flow destined for a domU on the local

hypervisor system must pass through a reference monitor

before being delivered. It is the responsibility of the MAC

code in dom0 to perform the translation between SELinux

subject labels on the IPsec tunnel and the sHype labels on

each domU. As illustrated in Figure 4, reference monitor

functionality exists in both the endpoint of the IPsec tunnel

in dom0 and in the hypervisor with sHype.

The type check in dom0 occurs automatically as part

of the normal operating behavior of our IPsec configura-

tion. The IPsec tunnels that we employ use tunnel-mode

extensions to labeled IPsec [17]. These researchers added

support for SELinux subject labels to be included in the ne-

gotiation process when IPsec connections are established.

IPsec policies are authorized for subjects, which are user

VMs in our system. User VMs are labeled based on the

STE labels assigned to the VMs by sHype. Note that we

depend on six dom0 kernel mediation points for correct

IPsec policy enforcement: four authorize allocation and

deallocation of IPsec policies and security associations,

and two filter incoming and outgoing packets.

The functionality of labeled IPsec [17] provides the

necessary guarantee that all IPsec packets will have subject

labels that are known to both endpoints. That is, an IPsec

connection cannot be established without both endpoints

having an entry for the tunnel label in their respective IPsec

and SELinux policies. Thus, packets with unknown labels

will never arrive via an established IPsec tunnel.

In our current implementation, the IPsec policy for each

dom0 (acting as a MAC VM) in the Shamon of a dis-

tributed coalition must be preconfigured with all possible

SELinux subject types that may be needed in a negotiation

to establish an IPsec tunnel. However, recent work by Yin

and Wang shows that it is possible to add new IPsec policy

on the fly [40].

4.3. Type Mapping and Enforcement

The IPsec tunnel and MAC VM are tools that help

to ensure that machines in a distributed coalition enforce

semantically equivalent sHype policies. To achieve this

goal, we must translate between SELinux subject types

and sHype types. In our prototype, the mapping from

sHype types to SELinux subject types is configured stati-

cally. SELinux subject types have the form user:role:type,

while sHype types can be arbitrary strings. Since cur-

rently we have no type transitions (in the SELinux sense)

for the types of domUs, we use the user domu u and the

role domu r. We adopted the convention that we inter-

pret the sHype type label as an SELinux type. For exam-

ple, an sHype type green t will map to SELinux type

domu u:domu r:green t.

We modified the authorization hook in the labeled IPsec

extensions to call our own authorization function for IPsec

packets destined for some domU. SELinux subject labels

for making authorization decisions are inferred from the

sHype label of the domU to which flows are destined,

or from which they originate. On xen-unstable, the

OS running in each domU has a virtual network inter-

face driver known as a frontend. The backend drivers for

all these virtual network interfaces reside in dom0, mani-

fested in the form of additional network interfaces. sHype

mediates communication between frontends and their cor-

responding backends inside the hypervisor. Device drivers

for physical network interfaces reside entirely in dom0, so

that packets to and from physical networks always leave

and enter the platform via dom0.

Our authorization function, numbering approximately

850 lines of commented C code, returns an SELinux se-

curity identifier (SID) when given a flowi and direction.

A flowi is a kernel struct which maintains state for a

generic Internet flow, including the input interface (IIF),

output interface (OIF), and source and destination IP ad-

dresses.

We added two data structures (linked lists of structs)

to the dom0 kernel to maintain the additional informa-

tion necessary for policy translation between SELinux and

sHype types. The first list maintains metadata for each

domU: its domain ID, Internet-visible IP address, and

backend interface name. The second maintains a mapping

between sHype textual labels and their binary equivalents

in compiled sHype policy. Both of these lists are manipu-

lated by reading and writing to entries in /proc/dynsa

(for dynamic security association). Maintenance of the

first list (domU metadata) is performed automatically by

extensions we made to the Xen scripts which start and

stop domUs. The second list (sHype mapping) is populated

whenever the sHype policy is loaded or changed (typically

once per boot, although it is possible to change the policy

while a system is running).

4.4. Integrity Measurement

We establish trust into the individual systems that form

a distributed MAC system by determining that each sys-

tem is running software that forms an acceptable refer-

ence monitor enforcing the required security properties,

that each system has been configured with a MAC policy

whereby the common MAC policy protects the coalition,

and that the software and policy have not been tampered

with. To this end we use remote attestation based on the

Trusted Platform Module (TPM).

The most important requirement is to establish trust into

the parts of each system that make up the Shamon. Re-

call from Figure 4 that the Shamon comprises the Xen hy-

pervisor and MAC VM (i.e., dom0) on all systems that

join a coalition. We attest to the integrity of these compo-

nents by inspecting measurements of the system BIOS and

boot loader, the Xen hypervisor image and its MAC policy,

as well as dom0’s SELinux kernel image, its initial RAM

disk and its MAC policy.

We also use the Integrity Measurement Architecture

(IMA) [31] to establish trust into the user VMs running on

top of the Shamon (i.e., domUs). We attest to the integrity

of a domU by inspecting measurements of its Linux kernel

image and its initial RAM disk, as well as application bina-

ries loaded in that virtual machine. For the BOINC client

and server, this involves measurement of their binaries.

We use a virtual TPM (vTPM) facility [9], which is al-

ready a part of xen-unstable, to report measurements

of software loaded into domUs. This facility is necessary to

make TPM functionality available to all virtual machines

running on a platform. It creates multiple vTPM instances

that each emulate the full functionality of a hardware TPM,

and multiplexes requests as needed to the single physical

TPM on the platform. Each domU is associated with a

vTPM instance that is automatically created and connected

to the domU when that virtual machine is created.

5. Experiments

We ran a number of experiments to verify the work-

load isolation and software integrity properties of our dis-

tributed MAC system. In all these experiments we used

the prototype system shown in Figure 4 and described in

Section 4.

5.1. Isolation

To verify isolation, we first constructed appropriate

sHype, SELinux and IPSec policies on shype1 and

shype2. To the sHype and SELinux policies we added

types named for colors, e.g., red t, green t, and

blue t. In the sHype policy, we gave dom0s access

to all sHype types since each dom0 plays the role of a

MAC virtual machine in our system. Recall that MAC

virtual machines assist the hypervisor in enforcing MAC

policy and form part of the trusted computing base. Also

in the sHype policy, we assigned the same sHype type to

the client and server domUs, e.g., green t, since they

form part of the same distributed coalition of virtual ma-

chines. To our policy translation tables we added map-

pings between corresponding sHype and SELinux types,

e.g., green t in sHype mapped to green t in SELinux.

As a final step in the policy configuration, we created la-

beled IPsec policies based on the IP addresses of shype1

and shype2, and on the IP addresses of the client and

server domUs. The domUs, being full-featured virtual ma-

chines, have their own IP addresses separate from the IP

addresses of shype1 and shype2. So, for example, we

added an entry to the IPsec Security Policy Database on

both shype1 and shype2 that instructs the system to al-

low communication between the BOINC client domU and

the BOINC server domU via a dynamically established

IPSec tunnel between shype1 and shype2 that is la-

beled green t. The SELinux policy has authorization

rules that allow green t subjects to send and receive us-

ing green t security associations.

Next, we confirmed that shype1 and shype2 could

not communicate unless the proper IPsec, SELinux and

sHype policies were in place at both endpoints. We verified

that the dom0s on shype1 and shype2 would not estab-

lish an IPsec tunnel between them until the necessary en-

tries had been added to the IPsec Security Policy Database

and the SELinux policy at each endpoint. We also ver-

ified that neither system would forward packets between

the IPsec tunnel endpoint in dom0 and the local domU un-

til the necessary entries had been added to the the sHype

policy in the Xen hypervisor, the SELinux policy in dom0,

and the type mapping tables in dom0.

In summary, only when all the appropriate policies are

in place can packets flow between the two domUs. In that

case, the BOINC server successfully sends compute jobs

to the BOINC client, who runs the jobs and successfully

sends the results back to the server.

5.2. Integrity

To verify the trustworthiness of the hypervisor envi-

ronments, including the dom0 integrity, we first built a

database of software components. For each component,

the database contains its measurement (i.e., hash), and

whether it’s trusted or untrusted. We added database en-

tries for the key trusted components mentioned in the dis-

cussion of attestation in the previous section. For example,

for the Xen hypervisor we measured its loadable image

and its security policy. For each dom0 we measured its

SELinux kernel image, its initial RAM disk, and its MAC

policy.

Next, we set up two pairwise attestation sessions. In

each session, one system periodically challenges the other

system for measurements of the software it has loaded into

the hypervisor environment that is relevant for the trust-

worthiness of the Shamon. We had dom0 on shype1

challenge dom0 on shype2, and vice versa. The chal-

lenged system returns a quote signed by the TPM of the

current values of PCR registers as well as the list of mea-

surements taken by the Integrity Measurement Architec-

ture [16, 31]. The challenging system compares the re-

turned measurements to its database of known trustworthy

components. Attestation succeeds if the measured compo-

nents are all found in the database.

Finally, we confirmed that shype1 and shype2 could

not communicate if any aspect of attestation failed. We

verified that the dom0s on shype1 and shype2 would

not establish an IPsec tunnel between them unless the at-

testation sessions between them showed that they were

running the expected software.

Further, we had domU on shype1 challenge domU on

shype2, and vice versa. This attestation pair establishes

security properties by mutually attesting the BOINC client

to the BOINC server and vice versa. These properties are

essential for the distributed BOINC client-server applica-

tion to ensure the trustworthiness of the BOINC computa-

tion result. For each domU we measured its Linux kernel

image, its initial RAM disk, and the images and configura-

tion information of applications such as the BOINC client.

We added to the database an entry for a test application that

we labeled untrusted.

We verified that the domUs on shype1 and shype2

would not communicate unless the attestation sessions be-

tween them showed correct results. In particular, we tested

the effectiveness of our periodic challenges by running

our untrusted test application alongside the BOINC client

software after communication had been successfully es-

tablished. The next time the server domU challenged the

client domU, the returned measurements included one for

the untrusted application, which caused the server domU to

shut down network communication with the client domU.

6. Discussion

In this section, we review the achievements as well as

the limitations of the prototype relative to the construction

of a reference monitor across machines.

Distributed tamper-proofness. Our prototype requires a

VM to successfully attest its ability to uphold the secu-

rity policies relevant for membership in a particular dis-

tributed coalition. We perform both bind-time checks and

periodic checks – resulting in tamper-responding behavior.

The labeled IPsec tunnel protects the flow of information

between members of a distributed coalition.

Distributed mediation. The labeled IPsec tunnel,

SELinux policy in the MAC VM, and sHype policy in

Xen ensure that all communication involving members of

a distributed coalition is subject to the constraints of the

distributed reference monitor.

Verifiable enforcement. Our prototype uses 13 total au-

thorizations in Xen and SELinux to enforce MAC policies,

and the MAC policies themselves only apply to user VMs

for 5 of the authorizations. However, the coalition we ex-

amined is fairly simple. Nonetheless, we are optimistic

that verification of the reference monitor and MAC poli-

cies at this level of abstraction may prove practical for a

number of interesting systems. The main challenge is re-

ducing the MAC VM or enabling verification of reference

monitor in spite of significant function in the MAC VM,

such as network processing, as discussed further below.

Layering security policy. Our distributed MAC archi-

tecture enforces MAC policy at two layers, the hypervisor

and MAC VM. A distributed MAC system is arranged such

that the most important security properties are achieved

by the lowest-complexity (most assurable) mechanisms.

In other words, the Shamon enforces coarse-grained in-

ter-VM policies. Intra-VM controls can benefit directly

from the Shamon mandatory controls through a hypervisor

interface that allows VMs to interact in a controlled way

with the hypervisor mandatory access control policy. This

structure is advantageous since the most security-critical

components are also the most robust.

Mitigating Covert Channels. The individual reference

monitors will not have complete formal assurance, so some

information flows, such as covert channels, may not be en-

forced. The sHype hypervisor MAC policy enables the use

of conflict sets of the Chinese Wall policy to formally de-

fine which coalitions cannot run at the same time on the

same hypervisor system [30].

Runtime tamper-responsiveness. TPM-based attesta-

tion mechanisms (e.g., IMA [31]) measure inputs at load-

time. Thus, runtime tampering may go undetected. Since

load-time guarantees do not cover all runtime tampering,

such issues are possible. However, the code loaded and at-

tested can safely be related to known vulnerabilities. It is

here that minimizing code and policy complexity can pay

off. Other techniques, such as Copilot [28] and BIND [33],

aim to provide some runtime guarantees in addition to

load-time guarantees, but they face other obstacles, such

as preventing circumvention and annotation effort.

Hardware attacks. This architecture does not protect the

system against cracking keys via hardware attacks. If such

protection is needed, attestation needs to obtain appropri-

ate guarantees (e.g., from a TPM in a location that assures

such protections).

7. Conclusions and Future Work

We developed a distributed systems architecture in

which MAC policies can be enforced across physically

separate systems, thereby bridging the reference monitor

between those systems and creating a Shamon. The ma-

jor insights are that attestation can serve as a basis for ex-

tending trust to remote reference monitors and that it is ac-

tually possible to obtain effective reference monitor guar-

antees from a Shamon. This work provides a mechanism

and guarantees for building a distributed reference monitor

to support distributed applications. In addition, the archi-

tecture also enables exploration of MAC, secure commu-

nication, and attestation policies and the construction of

reference monitors from a set of open-source components.

Our bridging architecture enables security policies to be

layered based on their complexity, from coarse-grained

hypervisor-level policy up to sophisticated application-

level policy.

Future work includes reducing the size of the MAC VM

and exploring additional policy options. Instead of running

a full Linux kernel in the MAC VM, specialized code can

be run which drives the network interface over which the

secure labeled tunnel connects, and supports only the criti-

cal components for MAC operation. This specialized code

may be designed to enforce more expressive policies, such

as Chinese Wall policies, which expands the applicability

of Shamon.

References

[1] M. Abadi, E. Wobber, M. Burrows, and B. Lampson. Au-

thentication in the Taos operating system. In Proceedings of

the ACM Symposium on Operating System Principles, 1993.

[2] D. P. Anderson. BOINC: A system for public-resource com-

puting and storage. In Proceedings of the Workshop on Grid

Computing, Nov. 2004.

[3] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky,

and D. Werthimer. SETI@Home: An experiment in

public-resource computing. Communications of the ACM,

45(11):56–61, 2002.

[4] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure and

reliable bootstrap architecture. In Proceedings of the IEEE

Symposium on Security and Privacy, May 1997.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of

virtualization. In Proceedings of the ACM Symposium on

Operating Systems Principles, Oct. 2003.

[6] E. Belani, A. Vahdat, T. Anderson, and M. Dahlin. The CRI-

SIS wide area security architecture. In Proceedings of the

USENIX Security Symposium, Jan. 1998.

[7] D. E. Bell and L. J. LaPadula. Secure computer systems:

Mathematical foundations and model. Technical Report

ESD-TR-75-306, The Mitre Corporation, Air Force Elec-

tronic Systems Division, Hanscom AFB, Badford, MA,

1976.

[8] D. E. Bell and L. J. LaPadula. Secure computer systems:

Unified exposition and multics interpretation. Technical re-

port, MITRE MTR-2997, March 1976.

[9] S. Berger, R. Cáceres, K. Goldman, R. Sailer, and L. van

Doorn. vTPM: Virtualizing the Trusted Platform Module. In

Proceedings of the USENIX Security Symposium, July 2006.

[10] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D.

Keromytis. The keynote trust-management system, version

2. IETF RFC 2704, Sept. 1999.

[11] W. E. Boebert and R. Y. Kain. A practical alternative to

heirarchical integrity policies. In Proceedings of the Na-

tional Computer Security Conference, 1985.

[12] D. F. C. Brewer and M. J. Nash. The chinese wall security

policy. In Proceedings of the IEEE Symposium on Security

and Privacy, 1989.

[13] C. M. Ellison, B. Frantz, B. Lampson, R. L. Rivest, B. M.

Thomas, and T. Ylonen. SPKI certificate theory. IETF RFC

2693, Sept. 1999.

[14] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of

the grid: Enabling scalable virtual organizations. Supercom-

puter Applications, 15(3), 2001.

[15] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and

D. Boneh. Terra: A virtual machine-based platform for

trusted computing. In Proceedings of the ACM Symposium

on Operating System Principles, October 2003.

[16] IBM. Integrity measurement architecture for linux.

http://www.sourceforge.net/projects/

linux-ima.

[17] T. R. Jaeger, S. Hallyn, and J. Latten. Leveraging IPSec for

mandatory access control of linux network communications.

Technical Report RC23642 (W0506-109), IBM, June 2005.

[18] P. A. Karger, M. E. Zurko, D. W. Bonin, A. H. Mason,

and C. E. Kahn. A retrospective on the VAX VMM secu-

rity kernel. IEEE Transactions on Software Engineering,

17(11):1147–1165, 1991.

[19] S. Kent and R. Atkinson. IP encapsulating security payload

(ESP). IETF RFC 2406, Nov. 1998.

[20] S. Kent and R. Atkinson. Security architecure for the inter-

net protocol. IETF RFC 2401, Nov. 1998.

[21] J. Kohl and C. Neuman. The Kerberos Network Authenti-

cation Service (V5). Internet Draft, Sept. 1992.

[22] B. Lampson, M. Abadi, M. Burrows, and E. Wobber.

Authentication in distributed systems: Theory and prac-

tice. ACM Transactions on Computer Systems (TOCS),

10(4):265–310, 1992.

[23] N. Li, B. N. Grosof, and J. Feigenbaum. Delegation logic:

A logic-based approach to distributed authorization. ACM

Transactions on Information and System Security (TISSEC),

6(1):128–171, Feb. 2003.

[24] N. Li and J. C. Mitchell. Understanding SPKI/SDSI using

first-order logic. In Proceedings of the IEEE Computer Se-

curity Foundations Workshop, pages 89–103, June 2003.

[25] R. Meushaw and D. Simard. NetTop: Commercial tech-

nology in high assurance applications. Tech Trend Notes,

9(4):1–8, 2000.

[26] Microsoft Corporation. Next generation secure computing

base. http://www.microsoft.com/resources/

ngscb/, May 2005.

[27] Open Software Foundation. Introduction to OSF DCE.

Prentice Hall, Englewood Cliffs, NJ, 1993.

[28] N. L. Petroni, T. Fraser, J. Molina, and W. A. Arbaugh.

Copilot - A coprocessor-based kernel runtime integrity mon-

itor. In Proceedings of the USENIX Security Symposium,

2004.

[29] T. T. Russell and M. Schaefer. Toward a high B level se-

curity architecture for the IBM ES/3090 processor resource

/ systems manager (PR/SM). In Proceedings of the National

Computer Security Conference, Oct. 1989.

[30] R. Sailer, T. Jaeger, E. Valdez, R. Cáceres, R. Perez,

S. Berger, J. Griffin, and L. van Doorn. Building a MAC-

based security architecture for the Xen opensource hypervi-

sor. In Proceedings of the Annual Computer Security Appli-

cations Conference, Dec. 2005.

[31] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design

and implementation of a TCG-based integrity measurement

architecture. In Proceedings of the USENIX Security Sym-

posium, 2004.

[32] M. Schaefer, B. Gold, R. Linde, and J. Scheid. Program

confinement in KVM/370. In Proceedings of the ACM Na-

tional Conference, Oct. 1977.

[33] E. Shi, A. Perrig, and L. V. Doorn. BIND: A time-of-use

attestation service for secure distributed systems. In Pro-

ceedings of IEEE Symposium on Security and Privacy, May

2005.

[34] S. Smalley, C. Vance, and W. Salamon. Implementing

SELinux as a linux security module. Technical Report 01-

043, NAI Labs, 2001.

[35] S. W. Smith. Outbound authentication for programmable

secure coprocessors. In Proceedings of the European Sym-

posium on Research in Computer Security, Oct. 2002.

[36] Sun Microsystems. Trusted Solaris 8 Operating Sys-

tem. http://www.sun.com/software/solaris/

trustedsolaris/, Feb. 2006.

[37] R. Watson, W. Morrison, C. Vance, and B. Feldman. The

TrustedBSD MAC framework: Extensible kernel access

control for FreeBSD 5.0. In Proceedings of the USENIX

Annual Technical Conference, June 2003.

[38] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Cza-

jkowski, J. Gawor, C. Kesselman, S. Meder, L. Pearlman,

and S. Tuecke. Security for grid services. In Proceedings

of Symposium on High Performance Distributed Computing,

June 2003.

[39] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-

Hartman. Linux Security Modules: General security support

for the linux kernel. In Proceedings of the USENIX Security

Symposium, 2002.

[40] H. Yin and H. Wang. Building an application-aware IPsec

policy system. In Proceedings of the USENIX Security Sym-

posium, 2005.

